期刊文献+
共找到15,467篇文章
< 1 2 250 >
每页显示 20 50 100
Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm 被引量:1
1
作者 Jianjun Zi Tao Liu +3 位作者 Wei Zhang Xiaohua Pan Hu Ji Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4285-4299,共15页
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta... The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm. 展开更多
关键词 Soil structure MICRO-CT multi-level thresholding MICP Genetic algorithm(GA)
下载PDF
Scheme Based on Multi-Level Patch Attention and Lesion Localization for Diabetic Retinopathy Grading 被引量:1
2
作者 Zhuoqun Xia Hangyu Hu +4 位作者 Wenjing Li Qisheng Jiang Lan Pu Yicong Shu Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期409-430,共22页
Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional ... Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064. 展开更多
关键词 DDR dataset diabetic retinopathy lesion localization multi-level patch attention mechanism
下载PDF
EGSNet:An Efficient Glass Segmentation Network Based on Multi-Level Heterogeneous Architecture and Boundary Awareness
3
作者 Guojun Chen Tao Cui +1 位作者 Yongjie Hou Huihui Li 《Computers, Materials & Continua》 SCIE EI 2024年第12期3969-3987,共19页
Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-see... Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-seeking real-time tasks such as autonomous driving.The inefficiency of the models is mainly due to employing homogeneous modules to process features of different layers.These modules require computationally intensive convolutions and weight calculation branches with numerous parameters to accommodate the differences in information across layers.We propose an efficient glass segmentation network(EGSNet)based on multi-level heterogeneous architecture and boundary awareness to balance the model performance and efficiency.EGSNet divides the feature layers from different stages into low-level understanding,semantic-level understanding,and global understanding with boundary guidance.Based on the information differences among the different layers,we further propose the multi-angle collaborative enhancement(MCE)module,which extracts the detailed information from shallow features,and the large-scale contextual feature extraction(LCFE)module to understand semantic logic through deep features.The models are trained and evaluated on the glass segmentation datasets HSO(Home-Scene-Oriented)and Trans10k-stuff,respectively,and EGSNet achieves the best efficiency and performance compared to advanced methods.In the HSO test set results,the IoU,Fβ,MAE(Mean Absolute Error),and BER(Balance Error Rate)of EGSNet are 0.804,0.847,0.084,and 0.085,and the GFLOPs(Giga Floating Point Operations Per Second)are only 27.15.Experimental results show that EGSNet significantly improves the efficiency of the glass segmentation task with better performance. 展开更多
关键词 Image segmentation multi-level heterogeneous architecture feature differences
下载PDF
Cloud-Edge Collaborative Federated GAN Based Data Processing for IoT-Empowered Multi-Flow Integrated Energy Aggregation Dispatch
4
作者 Zhan Shi 《Computers, Materials & Continua》 SCIE EI 2024年第7期973-994,共22页
The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial... The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time. 展开更多
关键词 IOT federated learning generative adversarial network data processing multi-flowintegration energy aggregation dispatch
下载PDF
Deep neural network based on multi-level wavelet and attention for structured illumination microscopy
5
作者 Yanwei Zhang Song Lang +2 位作者 Xuan Cao Hanqing Zheng Yan Gong 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期12-23,共12页
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know... Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems. 展开更多
关键词 Super-resolution reconstruction multi-level wavelet packet transform residual channel attention selective kernel attention
下载PDF
Weather Classification for Autonomous Vehicles under Adverse Conditions Using Multi-Level Knowledge Distillation
6
作者 Parthasarathi Manivannan Palaniyappan Sathyaprakash +3 位作者 Vaithiyashankar Jayakumar Jayakumar Chandrasekaran Bragadeesh Srinivasan Ananthanarayanan Md Shohel Sayeed 《Computers, Materials & Continua》 SCIE EI 2024年第12期4327-4347,共21页
Achieving reliable and efficient weather classification for autonomous vehicles is crucial for ensuring safety and operational effectiveness.However,accurately classifying diverse and complex weather conditions remain... Achieving reliable and efficient weather classification for autonomous vehicles is crucial for ensuring safety and operational effectiveness.However,accurately classifying diverse and complex weather conditions remains a significant challenge.While advanced techniques such as Vision Transformers have been developed,they face key limitations,including high computational costs and limited generalization across varying weather conditions.These challenges present a critical research gap,particularly in applications where scalable and efficient solutions are needed to handle weather phenomena’intricate and dynamic nature in real-time.To address this gap,we propose a Multi-level Knowledge Distillation(MLKD)framework,which leverages the complementary strengths of state-of-the-art pre-trained models to enhance classification performance while minimizing computational overhead.Specifically,we employ ResNet50V2 and EfficientNetV2B3 as teacher models,known for their ability to capture complex image features and distil their knowledge into a custom lightweight Convolutional Neural Network(CNN)student model.This framework balances the trade-off between high classification accuracy and efficient resource consumption,ensuring real-time applicability in autonomous systems.Our Response-based Multi-level Knowledge Distillation(R-MLKD)approach effectively transfers rich,high-level feature representations from the teacher models to the student model,allowing the student to perform robustly with significantly fewer parameters and lower computational demands.The proposed method was evaluated on three public datasets(DAWN,BDD100K,and CITS traffic alerts),each containing seven weather classes with 2000 samples per class.The results demonstrate the effectiveness of MLKD,achieving a 97.3%accuracy,which surpasses conventional deep learning models.This work improves classification accuracy and tackles the practical challenges of model complexity,resource consumption,and real-time deployment,offering a scalable solution for weather classification in autonomous driving systems. 展开更多
关键词 EfficientNetV2B3 multi-level knowledge distillation RestNet50V2 weather classification
下载PDF
A PI+R Control Scheme Based on Multi-Agent Systems for Economic Dispatch in Isolated BESSs
7
作者 Yalin Zhang Zhongxin Liu Zengqiang Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2154-2165,共12页
Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an incre... Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations. 展开更多
关键词 Battery energy storage system(BESS) distributed control economic dispatch multi-agent system reset control
下载PDF
Optimization dispatching strategy for an energy storage system considering its unused capacity sharing
8
作者 Hejun Yang Zhaochen Yang +2 位作者 Siyang Liu Dabo Zhang Yun Yu 《Global Energy Interconnection》 EI CSCD 2024年第5期590-602,共13页
In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small... In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving. 展开更多
关键词 Renewable energy Energy storage system Sharing energy storage Power system dispatching Peak shaving
下载PDF
Energy Economic Dispatch for Photovoltaic-Storage via Distributed Event-Triggered Surplus Algorithm
9
作者 Kaicheng Liu Chen Liang +2 位作者 Naiyue Wu Xiaoyang Dong Hui Yu 《Energy Engineering》 EI 2024年第9期2621-2637,共17页
This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy rol... This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm. 展开更多
关键词 Fully distributed algorithm economic dispatch directed graph renewable energy resource
下载PDF
Collaborative robust dispatch of electricity and carbon under carbon allowance trading market
10
作者 Songyu Wu Xiaoyan Qi +4 位作者 Xiang Li Xuanyu Liu Bolin Tong Feiyu Zhang Zhong Zhang 《Global Energy Interconnection》 EI CSCD 2024年第4期391-401,共11页
The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-sy... The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies. 展开更多
关键词 Asynchronous coupling mechanism Collaborative robust optimization Carbon price uncertainty Carbon capture power plant Low carbon dispatch
下载PDF
Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques
11
作者 Paramjeet Kaur Krishna Teerth Chaturvedi Mohan Lal Kolhe 《Energy Engineering》 EI 2024年第3期557-579,共23页
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent... In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs. 展开更多
关键词 Economic power dispatching distributed generations decentralized energy cost minimization optimization techniques
下载PDF
An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features
12
作者 Saad M.Darwish Abdul Rahman M.Sabri +1 位作者 Dhafar Hamed Abd Adel A.Elzoghabi 《Computer Systems Science & Engineering》 2024年第6期1595-1624,共30页
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient... The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%. 展开更多
关键词 Political articles orientation detection CatBoost classifier multi-level features context-based classification social networks machine learning stylometric features
下载PDF
Construction of a Multi-Level Strategic System for Cultivating Cultural Industry Management Talents in Colleges and Universities
13
作者 Zhenzhen Hu Tao Zhou 《Journal of Contemporary Educational Research》 2024年第10期75-82,共8页
Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of ... Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of cultural industry management talents in colleges and universities.First of all,based on SWOT analysis,it is found that colleges and universities have rich educational resources and policy support,but they face challenges such as insufficient practical teaching and intensified international competition.External opportunities come from the rapid development of the cultivation of cultural industry management talents and policy promotion,while threats come from global market competition and talent flow.Secondly,PEST analysis reveals the key factors in the macro-environment:at the political level,the state vigorously supports the cultivation of cultural industry management talents;at the economic level,the market demand for cultural industries is strong;at the social level,the public cultural consumption is upgraded;at the technological level,digital transformation promotes industry innovation.On this basis,this paper puts forward a multi-level strategic system covering theoretical education,practical skill improvement,interdisciplinary integration,and international vision training.The system aims to solve the problems existing in talent training in colleges and universities and cultivate high-quality cultural industry management talents with theoretical knowledge,practical skills,and global vision,so as to adapt to the increasingly complex and diversified cultural industry management talents market demand and promote the long-term development of the industry. 展开更多
关键词 Cultural industry management talents Personnel training multi-level strategic system
下载PDF
Decision model and algorithm for traffic rescue resource dispatching on expressway 被引量:6
14
作者 柴干 朱苍晖 +1 位作者 万水 濮居一 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期252-256,共5页
In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue reso... In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate. 展开更多
关键词 dispatch decision model scene decomposition algorithm traffic rescue resource EXPRESSWAY
下载PDF
量化测试高性能L5-Dispatcher 被引量:1
15
作者 雷迎春 张松 李国杰 《计算机研究与发展》 EI CSCD 北大核心 2003年第8期1153-1161,共9页
主要内容是关于HTTPSplicing的性能评测 HTTPSplicing是针对TCPSplicing的缺陷而提出的 ,TCPSplicing现被广泛应用在L5 Dispatcher(即基于内容的Web交换机 )中 测试内容包括开销测试、性能测试、与L4 Dispatcher的对比测试、与TCPSpli... 主要内容是关于HTTPSplicing的性能评测 HTTPSplicing是针对TCPSplicing的缺陷而提出的 ,TCPSplicing现被广泛应用在L5 Dispatcher(即基于内容的Web交换机 )中 测试内容包括开销测试、性能测试、与L4 Dispatcher的对比测试、与TCPSplicing的对比测试和扩展性测试 所获得的结论为 :当尽力 (besteffort)访问 1KB大小的文件时 ,HTTPSplicing的性能要比TCPSplicing至少快 3 5倍 ,而当尽力访问 10KB大小的文件时 ,HTTPSplicing的性能比TCPSplic ing的性能高 2 2 % 当尽力访问 30 7KB大小的文件时 ,HTTPSplicing的一种实现———WebPatcher———的最好性能值为5 5 5 6 8replies/s ,超过了ArrowPoint公司的CS 10 0 (1193replies/s)和Alteon公司的ACEdirector 3(v6 0 2 5 ) (135 6replies/s). 展开更多
关键词 dispatchER TCP SPLICING HTTP SPLICING 评测工具
下载PDF
Optimal dispatching method of traffic incident rescue resource for freeway network 被引量:1
16
作者 柴干 冉旭 夏井新 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期336-341,共6页
An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of rout... An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios. 展开更多
关键词 optimal dispatching potential incident GENETICALGORITHM rescue resource freeway network
下载PDF
高性能L5-Dispatcher的性能评测 被引量:7
17
作者 雷迎春 周幼英 李军 《计算机研究与发展》 EI CSCD 北大核心 2003年第3期475-482,共8页
为支持基于请求内容调度的策略 ,提出并实现了一个集中调度、分布路由的可扩展路由机制 与通常的单前端机不同 ,提出的可扩展路由结构由多个前端机组成 一个前端机执行集中调度任务 (即调度器 ) ,其余的前端机执行分布路由任务 (即转发... 为支持基于请求内容调度的策略 ,提出并实现了一个集中调度、分布路由的可扩展路由机制 与通常的单前端机不同 ,提出的可扩展路由结构由多个前端机组成 一个前端机执行集中调度任务 (即调度器 ) ,其余的前端机执行分布路由任务 (即转发器 ) 测试数据表明 ,一台运行调度器程序的PⅢ 933主机的吞吐量为 4 5 0 0 0 0conns/s,可满足 80台转发器同时请求调度服务 换言之 ,有 80台转发器可同时转发请求数据或响应数据 ,即分布式前端总共可提供 展开更多
关键词 分发器 HTTP SPLICING 调度器 转发器
下载PDF
基于请求内容的高性能L5-Dispatcher 被引量:11
18
作者 雷迎春 李国杰 张松 《计算机研究与发展》 EI CSCD 北大核心 2002年第2期183-191,共9页
提出了一种实现高性能 L5 - Dispatcher的方法—— HTTP Splicing.其特点有 :1脱离正常操作系统的TCP实现 ,而根据 L5 - Dispatcher的需要实现一个功能精简的 TCP(称为 RTCP) ;2 HTTP请求的解析工作不再需第 3方程序 (如 Proxy应用程序 ... 提出了一种实现高性能 L5 - Dispatcher的方法—— HTTP Splicing.其特点有 :1脱离正常操作系统的TCP实现 ,而根据 L5 - Dispatcher的需要实现一个功能精简的 TCP(称为 RTCP) ;2 HTTP请求的解析工作不再需第 3方程序 (如 Proxy应用程序 )的干预 ,而直接实现在 RTCP中 ;3在 IP层转发 HTTP包 ;4完全的 I/ O零拷贝 ;5支持 HTTP1.1协议 .与已有的 TCP Gateway和 TCP Splicing相比 ,HTTP Splicing方法没有打断客户端和后端服务器之间的 TCP可靠传输机制 ,因此具有更好的性能 .经测试 ,用 HTTP Splicing技术实现的 L5 - Dispatcher的性能与 L inux操作系统自带的 L4 - Dispatcher—— ip vs——性能几乎完全相等 ,且比现有的基于 TCP Splicing技术的 L5 - Dispatcher的性能好约 2 0 % . 展开更多
关键词 分发器 高性能LS-dispatcher INTERNET 服务器 网络协议
下载PDF
DISPATCH系统在我国大型露天矿山中的应用 被引量:5
19
作者 李军才 《中国矿业》 北大核心 2000年第S1期105-108,共4页
本文首先介绍DISPATCH系统在国内外的应用情况,然后详细地介绍了德兴铜矿购买的DISPATCH系统,包括系统配置、组成、主要原理、优化算法、数据库、网络、系统组成等,最后介绍了取得的经济效益。
关键词 dispatch系统 露天矿山 GPS系统
下载PDF
玉米收割机调度系统的设计与实现
20
作者 王政 王东 朱学卫 《农机化研究》 北大核心 2025年第4期137-140,150,共5页
针对玉米收获期间收割机供求信息滞后、资源配置不合理的问题,基于MVC编程模式和WEB设计规范,引入B/S架构和微信小程序技术,搭建玉米收割机调度系统进行客户订单管理。采用人工鱼群算法规划玉米收割机调度路线,农机手按照微信小程序中... 针对玉米收获期间收割机供求信息滞后、资源配置不合理的问题,基于MVC编程模式和WEB设计规范,引入B/S架构和微信小程序技术,搭建玉米收割机调度系统进行客户订单管理。采用人工鱼群算法规划玉米收割机调度路线,农机手按照微信小程序中的调度路线完成客户订单,从而实现玉米收割机调度系统的智能化管理,提高了玉米收割机的利用效率和作业效益。 展开更多
关键词 玉米收割机 B/S架构 调度系统 MVC WEB
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部