期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A Novel Location Method for Interline Power Flow Controllers Based on Entropy Theory
1
作者 Qiuyu Li Baohong Li +3 位作者 Qin Jiang Tianqi Liu Yin Yue Yingmin Zhang 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第3期70-81,共12页
As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Neverthe... As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Nevertheless,how to choose the appropriate location for the IPFC converters has not been discussed thoroughly.To solve this problem,this paper proposes a novel location method for IPFC using entropy theory.To clarify IPFC’s impact on system power flow,its operation mechanism and control strategies of different types of serial converters are discussed.Subsequently,to clarify the system power flow characteristic suitable for device location analysis,the entropy concept is introduced.In this process,the power flow distribution entropy index is used as an optimization index.Using this index as a foundation,the power flow transfer entropy index is also generated and proposed for the IPFC location determination study.Finally,electromechanical electromagnetic hybrid simulations based on ADPSS are implemented for validation.These are tested in a practical power grid with over 800 nodes.A modular multilevel converter(MMC)-based IPFC electromagnetic model is also established for precise verification.The results show that the proposed method can quickly and efficiently complete optimized IPFC location and support IPFC to determine an optimal adjustment in the N-1 fault cases. 展开更多
关键词 Flexible alternative current transmission systems interline power flow controller modular multi-level converter optimized location method power flow transfer entropy
原文传递
Analogies Between the Nonlinear Control Problem and the Multi-level Substructural Method
2
作者 邓子辰 《Chinese Science Bulletin》 SCIE EI CAS 1994年第20期1688-1691,共4页
The establishment of the analogy theory between optimal control and computational structural mechanics is based on the linear quadratic control problem in optimal control and the substructural chain theory in structur... The establishment of the analogy theory between optimal control and computational structural mechanics is based on the linear quadratic control problem in optimal control and the substructural chain theory in structural mechanics.When the nonlinear optimal control problem is treated by the above theory, especially 展开更多
关键词 NONLINEAR CONTROL multi-level substructural method analogy.
原文传递
Structural Optimization of Hatch Cover Based on Bi-directional Evolutionary Structure Optimization and Surrogate Model Method 被引量:3
3
作者 李楷 于雁云 +2 位作者 何靖仪 赵德财 林焰 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第4期538-549,共12页
Weight reduction has attracted much attention among ship designers and ship owners.In the present work,based on an improved bi-directional evolutionary structural optimization(BESO) method and surrogate model method,w... Weight reduction has attracted much attention among ship designers and ship owners.In the present work,based on an improved bi-directional evolutionary structural optimization(BESO) method and surrogate model method,we propose a hybrid optimization method for the structural design optimization of beam-plate structures,which covers three optimization levels:dimension optimization,topology optimization and section optimization.The objective of the proposed optimization method is to minimize the weight of design object under a group of constraints.The kernel optimization procedure(KOP) uses BESO to obtain the optimal topology from a ground structure.To deal with beam-plate structures,the traditional BESO method is improved by using cubic box as the unit cell instead of solid unit to construct periodic lattice structure.In the first optimization level,a series of ground structures are generated based on different dimensional parameter combinations,the KOP is performed to all the ground structures,the response surface model of optimal objective values and dimension parameters is created,and then the optimal dimension parameters can be obtained.In the second optimization level,the optimal topology is obtained by using the KOP according to the optimal dimension parameters.In the third optimization level,response surface method(RSM) is used to determine the section parameters.The proposed method is applied to a hatch cover structure design.The locations and shapes of all the structural members are determined from an oversized ground structure.The results show that the proposed method leads to a greater weight saving,compared with the original design and genetic algorithm(GA) based optimization results. 展开更多
关键词 hatch cover structure optimization multi-level optimization bi-directional evolutionary structural optimization response surface method
原文传递
Characteristics of the transient thermal load and deformation of the evacuated receiver in solar parabolic trough collector 被引量:2
4
作者 LI Lu YU HuaJie +1 位作者 LI YinShi HE Ya-Ling 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第7期1188-1201,共14页
As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and dama... As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and damage. This work develops an efficient transient multi-level multi-dimensional(M2) analysis method to address photo-thermal-elastic problems, thereby estimating transient thermal load and deformation for the receiver:(i) one-dimensional(1-D) thermo-hydraulic model is adopted to determine the transient thermo-hydraulic state,(ii) 3-D finite volume method(FVM) model for the receiver tube is established to obtain the real-time temperature distribution,(iii) 3-D finite element method(FEM) model is employed to make thermoelastic analysis. Based on this M2 method, the typical transient cases are conducted in cold-start, disturbed-operation and regulatedprocess. Three indicators(average temperature of the wall(ATW), radial temperature difference(RTD), circumferential temperature difference(CTD)) are defined for overall analysis of the receiver thermal load. It is found that in the transient process,receivers face response delay and endure significant thermal load fluctuation. The response time for a single HCE(heat collecting element) under lower mass flow rate(1.5 kg s-1) could sustain 280 s. During the cold-start stage(DNI=200 W m-2 to 800 W m-2), the maximum value of CTD in receiver is as high as 11.67℃, corresponding to a maximum deflection of 1.05 cm.When the mass flow rate decreases sharply by 80%, the CTD reaches 33.04℃, causing a 2.06-cm deflection. It should be pointed out that in the cold-start stage and the lower mass flow rate operation for solar parabolic trough collector, alleviating the transient thermal load and deformation is of importance for safely and efficiently running evaluated receiver. 展开更多
关键词 solar energy transient thermal load and deformation heat collecting element parabolic trough collector multi-level multi-dimensional analysis method
原文传递
Spectral Analysis for Preconditioning of Multi-Dimensional Riesz Fractional Diffusion Equations 被引量:1
5
作者 Xin Huang Xue-Lei Lin +1 位作者 Michael K.Ng Hai-Wei Sun 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2022年第3期565-591,共27页
In this paper,we analyze the spectra of the preconditioned matrices arising from discretized multi-dimensional Riesz spatial fractional diffusion equations.The finite difference method is employed to approximate the m... In this paper,we analyze the spectra of the preconditioned matrices arising from discretized multi-dimensional Riesz spatial fractional diffusion equations.The finite difference method is employed to approximate the multi-dimensional Riesz fractional derivatives,which generates symmetric positive definite ill-conditioned multi-level Toeplitz matrices.The preconditioned conjugate gradient method with a preconditioner based on the sine transform is employed to solve the resulting linear system.Theoretically,we prove that the spectra of the preconditioned matrices are uniformly bounded in the open interval(12,32)and thus the preconditioned conjugate gradient method converges linearly within an iteration number independent of the discretization step-size.Moreover,the proposed method can be extended to handle ill-conditioned multi-level Toeplitz matrices whose blocks are generated by functions with zeros of fractional order.Our theoretical results fill in a vacancy in the literature.Numerical examples are presented to show the convergence performance of the proposed preconditioner that is better than other preconditioners. 展开更多
关键词 Multi-dimensional Riesz fractional derivative multi-level Toeplitz matrix sine transform based preconditioner preconditioned conjugate gradient method
原文传递
Multilevel Techniques for the Solution of HJB Minimum-Time Control Problems
6
作者 CIARAMELLA Gabriele FABRINI Giulia 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第6期2069-2091,共23页
The solution of minimum-time feedback optimal control problems is generally achieved using the dynamic programming approach,in which the value function must be computed on numerical grids with a very large number of p... The solution of minimum-time feedback optimal control problems is generally achieved using the dynamic programming approach,in which the value function must be computed on numerical grids with a very large number of points.Classical numerical strategies,such as value iteration(VI)or policy iteration(PI)methods,become very inefficient if the number of grid points is large.This is a strong limitation to their use in real-world applications.To address this problem,the authors present a novel multilevel framework,where classical VI and PI are embedded in a full-approximation storage(FAS)scheme.In fact,the authors will show that VI and PI have excellent smoothing properties,a fact that makes them very suitable for use in multilevel frameworks.Moreover,a new smoother is developed by accelerating VI using Anderson’s extrapolation technique.The effectiveness of our new scheme is demonstrated by several numerical experiments. 展开更多
关键词 Anderson acceleration FAS Hamilton-Jacobi equation minimum-time problem multi-level acceleration methods policy iteration value iteration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部