期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进RDN网络的无人机茶叶图像超分辨率重建
1
作者 鲍文霞 吴育桉 +2 位作者 胡根生 杨先军 汪振宇 《农业机械学报》 EI CAS CSCD 北大核心 2023年第4期241-249,共9页
针对无人机搭建可见光传感器进行茶叶长势、病害等监测中因飞行高度影响图像分辨率的问题,本文提出了一种改进的残差密集网络(Residual dense network,RDN)用于无人机茶叶图像超分辨率重建。针对无人机茶叶图像纹理复杂的特点,以RDN为... 针对无人机搭建可见光传感器进行茶叶长势、病害等监测中因飞行高度影响图像分辨率的问题,本文提出了一种改进的残差密集网络(Residual dense network,RDN)用于无人机茶叶图像超分辨率重建。针对无人机茶叶图像纹理复杂的特点,以RDN为基线网络,在其结构中引入了残差组(Residual group,RG)模块,将多个残差通道注意力模块(Residual channel attention block,RCAB)组合在一起,通过引入注意力机制来区别对待不同的通道,关注无人机茶叶图像高频细节信息,从而提高网络的表征能力;同时设计了一个卷积长跳跃结构,利用带有卷积的远程跳跃连接,动态调整经过残差密集块(Residual dense block,RDB)后特征的权重,更好地利用无人机茶叶图像的分层特征信息,从而提升超分辨率重建图像的质量。实验结果表明,本文改进的RDN网络在无人机茶叶图像测试集上相较于其他算法表现更优,超分辨率重建后的图像具有更高的峰值信噪比和结构相似度,在4倍超分的情况下分别达到36.03 dB和0.9132,能够为茶叶智能化监测研究提供支持。 展开更多
关键词 茶叶 图像重建 超分辨率 残差组模块 卷积长跳跃结构
下载PDF
基于多级跳跃残差组的运动人像去模糊网络
2
作者 纪佳奇 卢振坤 +2 位作者 熊福棚 张甜 杨豪 《计算机应用》 CSCD 北大核心 2023年第10期3244-3250,共7页
为解决复原后的运动模糊人像图像的轮廓模糊、细节丢失等问题,提出了基于多级跳跃残差组生成对抗网络(GAN)的运动人像去模糊方法。首先,改进残差块以构造多级跳跃残差组模块,并改进PatchGAN的结构以使GAN能够更好地结合各层的图像特征;... 为解决复原后的运动模糊人像图像的轮廓模糊、细节丢失等问题,提出了基于多级跳跃残差组生成对抗网络(GAN)的运动人像去模糊方法。首先,改进残差块以构造多级跳跃残差组模块,并改进PatchGAN的结构以使GAN能够更好地结合各层的图像特征;其次,使用多损失融合的方法优化网络,从而增强重建后图像的真实纹理;最后,采用端到端的模式将运动模糊的人像图像进行盲去模糊操作,并输出清晰的人像图像。在CelebA数据集上的实验结果表明,相较于DeblurGAN(Deblur GAN)、尺度循环网络(SRN)和MSRAN(Multi-Scale Recurrent Attention Network)等基于卷积神经网络(CNN)的方法,所提方法的峰值信噪比(PSNR)和结构相似度(SSIM)分别至少提高了0.46 dB和0.05;同时,所提方法的模型参数更少,修复速度更快,且复原后的人像图像具有更多的纹理细节。 展开更多
关键词 图像去模糊 盲去模糊 生成对抗网络 多级跳跃残差组 多损失融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部