In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus...In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.展开更多
In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the ...In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the responses and part of the covariates are missing at random,and the ultra-high dimension implies that the dimension of parameter is much larger than sample size.Based on the B-spline method for the varying coefficient functions,we study the consistency of the oracle estimator which is obtained only using active covariates whose coefficients are nonzero.At the same time,we discuss the asymptotic normality of the oracle estimator for the linear parameter.Note that the active covariates are unknown in practice,non-convex penalized estimator is investigated for simultaneous variable selection and estimation,whose oracle property is also established.Finite sample behavior of the proposed methods is investigated via simulations and real data analysis.展开更多
The quantile estimation methods are proposed for functional-coefficient partially linear regression (FCPLR) model by combining nonparametric and functional-coefficient regression (FCR) model. The local linear sche...The quantile estimation methods are proposed for functional-coefficient partially linear regression (FCPLR) model by combining nonparametric and functional-coefficient regression (FCR) model. The local linear scheme and the integrated method are used to obtain Focal quantile estimators of all unknown functions in the FCPLR model. These resulting estimators are asymptotically normal, but each of them has big variance. To reduce variances of these quantile estimators, the one-step backfitting technique is used to obtain the efficient quantile estimators of all unknown functions, and their asymptotic normalities are derived. Two simulated examples are carried out to illustrate the proposed estimation methodology.展开更多
考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统...考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统计的包括部分观测PM2.5数值的气象数据,分析了PM2.5作为部分观测函数型解释变量对标量响应变量平均气温的影响,结果表明了该方法具有处理缺失函数数据的现实意义.展开更多
文摘In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.
基金Supported by National Natural Science Foundation of China(Grant No.12071348)Fundamental Research Funds for Central Universities,China(Grant No.2023-3-2D-04)。
文摘In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the responses and part of the covariates are missing at random,and the ultra-high dimension implies that the dimension of parameter is much larger than sample size.Based on the B-spline method for the varying coefficient functions,we study the consistency of the oracle estimator which is obtained only using active covariates whose coefficients are nonzero.At the same time,we discuss the asymptotic normality of the oracle estimator for the linear parameter.Note that the active covariates are unknown in practice,non-convex penalized estimator is investigated for simultaneous variable selection and estimation,whose oracle property is also established.Finite sample behavior of the proposed methods is investigated via simulations and real data analysis.
基金supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y6110662)
文摘The quantile estimation methods are proposed for functional-coefficient partially linear regression (FCPLR) model by combining nonparametric and functional-coefficient regression (FCR) model. The local linear scheme and the integrated method are used to obtain Focal quantile estimators of all unknown functions in the FCPLR model. These resulting estimators are asymptotically normal, but each of them has big variance. To reduce variances of these quantile estimators, the one-step backfitting technique is used to obtain the efficient quantile estimators of all unknown functions, and their asymptotic normalities are derived. Two simulated examples are carried out to illustrate the proposed estimation methodology.
文摘考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统计的包括部分观测PM2.5数值的气象数据,分析了PM2.5作为部分观测函数型解释变量对标量响应变量平均气温的影响,结果表明了该方法具有处理缺失函数数据的现实意义.