This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous ...This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.展开更多
Objectives:When detecting changes in synthetic aperture radar(SAR)images,the quality of the difference map has an important impact on the detection results,and the speckle noise in the image interferes with the extrac...Objectives:When detecting changes in synthetic aperture radar(SAR)images,the quality of the difference map has an important impact on the detection results,and the speckle noise in the image interferes with the extraction of change information.In order to improve the detection accuracy of SAR image change detection and improve the quality of the difference map,this paper proposes a method that combines the popular deep neural network with the clustering algorithm.Methods:Firstly,the SAR image with speckle noise was constructed,and the FFDNet architecture was used to retrain the SAR image,and the network parameters with better effect on speckle noise suppression were obtained.Then the log ratio operator is generated by using the reconstructed image output from the network.Finally,K-means and FCM clustering algorithms are used to analyze the difference images,and the binary map of change detection results is generated.Results:The experimental results have high detection accuracy on Bern and Sulzberger’s real data,which proves the effectiveness of the method.展开更多
An integrated method based on optical and digital image processing is presented to suppress speckle in digital holography. A spatial light modulator is adopted to introduce random phases to the illuminating beam. Mult...An integrated method based on optical and digital image processing is presented to suppress speckle in digital holography. A spatial light modulator is adopted to introduce random phases to the illuminating beam. Multiple holograms are reconstructed and superimposed, and the intensity is averaged to smooth the noise. The adaptive algorithm based on the nonlocal means is designed to further suppress the speckle. The presented method is compared with other methods reduction is improved, and the proposed method is effective The experimental results show that speckle and feasible.展开更多
The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex b...The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex background noise. The short-time fractal dimension and discrete fractional cosine transform methods are combined to reduce noise. The input SNR is 0-15 dB while corrosion acoustic emission signals being added with white noise, color noise and pink noise respectively. The results show that the output signal-to-noise ratio is improved by up to 8 dB compared with discrete cosine transform and discrete fractional cosine transform. The above-mentioned noise reduction method is of significance for the identification of corrosion induced acoustic emission signals and the evaluation of the metal remaining life.展开更多
基金This research was funded by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project, project number CZ.02.1.01/0.0/0.0/16_019 /0000867by the Ministry of Education of the Czech Republic, Project No. SP2021/32.
文摘This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.
文摘Objectives:When detecting changes in synthetic aperture radar(SAR)images,the quality of the difference map has an important impact on the detection results,and the speckle noise in the image interferes with the extraction of change information.In order to improve the detection accuracy of SAR image change detection and improve the quality of the difference map,this paper proposes a method that combines the popular deep neural network with the clustering algorithm.Methods:Firstly,the SAR image with speckle noise was constructed,and the FFDNet architecture was used to retrain the SAR image,and the network parameters with better effect on speckle noise suppression were obtained.Then the log ratio operator is generated by using the reconstructed image output from the network.Finally,K-means and FCM clustering algorithms are used to analyze the difference images,and the binary map of change detection results is generated.Results:The experimental results have high detection accuracy on Bern and Sulzberger’s real data,which proves the effectiveness of the method.
基金supported by the National Natural Science Foundation of China(No.61177018)the Program for New Century Excellent Talents in University(No.NECT-11-0596)+1 种基金the Key Program of Beijing Sci-ence and Technology Plan(No.D121100004812001)Beijing Nova Program(No.2011066)
文摘An integrated method based on optical and digital image processing is presented to suppress speckle in digital holography. A spatial light modulator is adopted to introduce random phases to the illuminating beam. Multiple holograms are reconstructed and superimposed, and the intensity is averaged to smooth the noise. The adaptive algorithm based on the nonlocal means is designed to further suppress the speckle. The presented method is compared with other methods reduction is improved, and the proposed method is effective The experimental results show that speckle and feasible.
文摘The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex background noise. The short-time fractal dimension and discrete fractional cosine transform methods are combined to reduce noise. The input SNR is 0-15 dB while corrosion acoustic emission signals being added with white noise, color noise and pink noise respectively. The results show that the output signal-to-noise ratio is improved by up to 8 dB compared with discrete cosine transform and discrete fractional cosine transform. The above-mentioned noise reduction method is of significance for the identification of corrosion induced acoustic emission signals and the evaluation of the metal remaining life.