Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion s...Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different spatial positions and sharing the weighted feature data across different modalities, thereby reducing the interference of multi-modal features. Subsequently, lightweight modules with depthwise separable convolution are incorporated to reduce the model’s parameter count and computational load through channel-wise and point-wise convolutions. The network model algorithm proposed in this paper was experimentally validated on the publicly available KAIST dataset and compared with other existing methods. The experimental results demonstrate that our approach achieves favorable performance in various complex environments, affirming the effectiveness of the multispectral pedestrian detection technology proposed in this paper.展开更多
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient...The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.展开更多
To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure ...To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.展开更多
Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label c...Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin.展开更多
Pedestrian detection is one of the most important problems in the visual sensor network. Considering that the visual sensors have limited cap ability, we propose a pedestrian detection method with low energy consumpti...Pedestrian detection is one of the most important problems in the visual sensor network. Considering that the visual sensors have limited cap ability, we propose a pedestrian detection method with low energy consumption. Our method contains two parts: one is an Enhanced Self-Organizing Background Subtraction (ESOBS) based foreground segmentation module to obtain active areas in the observed region from the visual sensors; the other is an appearance model based detection module to detect the pedestrians from the foreground areas. Moreover, we create our own large pedestrian dataset according to the specific scene in the visual sensor network. Numerous experiments are conducted in both indoor and outdoor specific scenes. The experimental results show that our method is effective.展开更多
The main purpose of YOLOv3,aiming to improve the detection speed and accuracy from current detection models,is to predict the center coordinates of(x,y)from the Bounding Box and its length,width through multiple layer...The main purpose of YOLOv3,aiming to improve the detection speed and accuracy from current detection models,is to predict the center coordinates of(x,y)from the Bounding Box and its length,width through multiple layers of VGG Convolutional Neural Network(VGG-CNN)and uses the Darknet lightweight framework to process images at a faster speed.More specifically,our model has been reduced part of YOLOv3's complex and computationally intensive procedures and improved its algorithms to maintain the efficiency and accuracy of object detection.By this method,it performs a higher quality on mass object detection tasks with fewer detection errors.展开更多
The COVID-19 virus is usually spread by small droplets when talking,coughing and sneezing,so maintaining physical distance between people is necessary to slow the spread of the virus.The World Health Organization(WHO)...The COVID-19 virus is usually spread by small droplets when talking,coughing and sneezing,so maintaining physical distance between people is necessary to slow the spread of the virus.The World Health Organization(WHO)recommends maintaining a social distance of at least six feet.In this paper,we developed a real-time pedestrian social distance risk alert system for COVID-19,whichmonitors the distance between people in real-time via video streaming and provides risk alerts to the person in charge,thus avoiding the problem of too close social distance between pedestrians in public places.We design a lightweight convolutional neural network architecture to detect the distance between people more accurately.In addition,due to the limitation of camera placement,the previous algorithm based on flat view is not applicable to the social distance calculation for cameras,so we designed and developed a perspective conversion module to reduce the image in the video to a bird’s eye view,which can avoid the error caused by the elevation view and thus provide accurate risk indication to the user.We selected images containing only person labels in theCOCO2017 dataset to train our networkmodel.The experimental results show that our network model achieves 82.3%detection accuracy and performs significantly better than other mainstream network architectures in the three metrics of Recall,Precision and mAP,proving the effectiveness of our system and the efficiency of our technology.展开更多
In pedestrian re-recognition,the traditional pedestrian re-recognition method will be affected by the changes of background,veil,clothing and so on,which will make the recognition effect decline.In order to reduce the...In pedestrian re-recognition,the traditional pedestrian re-recognition method will be affected by the changes of background,veil,clothing and so on,which will make the recognition effect decline.In order to reduce the impact of background,veil,clothing and other changes on the recognition effect,this paper proposes a pedestrian re-recognition method based on the cycle-consistent generative adversarial network and multifeature fusion.By comparing the measured distance between two pedestrians,pedestrian re-recognition is accomplished.Firstly,this paper uses Cycle GAN to transform and expand the data set,so as to reduce the influence of pedestrian posture changes as much as possible.The method consists of two branches:global feature extraction and local feature extraction.Then the global feature and local feature are fused.The fused features are used for comparison measurement learning,and the similarity scores are calculated to sort the samples.A large number of experimental results on large data sets CUHK03 and VIPER show that this new method reduces the influence of background,veil,clothing and other changes on the recognition effect.展开更多
基金supported by the Henan Provincial Science and Technology Research Project under Grants 232102211006,232102210044,232102211017,232102210055 and 222102210214the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205+1 种基金the Undergraduate Universities Smart Teaching Special Research Project of Henan Province under Grant Jiao Gao[2021]No.489-29the Doctor Natural Science Foundation of Zhengzhou University of Light Industry under Grants 2021BSJJ025 and 2022BSJJZK13.
文摘Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different spatial positions and sharing the weighted feature data across different modalities, thereby reducing the interference of multi-modal features. Subsequently, lightweight modules with depthwise separable convolution are incorporated to reduce the model’s parameter count and computational load through channel-wise and point-wise convolutions. The network model algorithm proposed in this paper was experimentally validated on the publicly available KAIST dataset and compared with other existing methods. The experimental results demonstrate that our approach achieves favorable performance in various complex environments, affirming the effectiveness of the multispectral pedestrian detection technology proposed in this paper.
文摘The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.
基金Supported by the Shanxi Natural Science Foundation under contract number 20041070 and Natural Science Foundation of north u-niversity of China .
文摘To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.
基金Supported by the National Natural Science Foundation of China(No.61602191,61672521,61375037,61473291,61572501,61572536,61502491,61372107,61401167)the Natural Science Foundation of Fujian Province(No.2016J01308)+3 种基金the Scientific and Technology Funds of Quanzhou(No.2015Z114)the Scientific and Technology Funds of Xiamen(No.3502Z20173045)the Promotion Program for Young and Middle aged Teacher in Science and Technology Research of Huaqiao University(No.ZQN-PY418,ZQN-YX403)the Scientific Research Funds of Huaqiao University(No.16BS108)
文摘Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin.
基金This paper was supported partially by the Natural Science Foundation of China under Grants No. 60833009, No. 61003280 the National Science Fund for Distinguished Young Scholars under Grant No. 60925010+1 种基金 the Funds for Creative Research Groups of China under Grant No.61121001 the Pro- gram for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT1049.
文摘Pedestrian detection is one of the most important problems in the visual sensor network. Considering that the visual sensors have limited cap ability, we propose a pedestrian detection method with low energy consumption. Our method contains two parts: one is an Enhanced Self-Organizing Background Subtraction (ESOBS) based foreground segmentation module to obtain active areas in the observed region from the visual sensors; the other is an appearance model based detection module to detect the pedestrians from the foreground areas. Moreover, we create our own large pedestrian dataset according to the specific scene in the visual sensor network. Numerous experiments are conducted in both indoor and outdoor specific scenes. The experimental results show that our method is effective.
文摘The main purpose of YOLOv3,aiming to improve the detection speed and accuracy from current detection models,is to predict the center coordinates of(x,y)from the Bounding Box and its length,width through multiple layers of VGG Convolutional Neural Network(VGG-CNN)and uses the Darknet lightweight framework to process images at a faster speed.More specifically,our model has been reduced part of YOLOv3's complex and computationally intensive procedures and improved its algorithms to maintain the efficiency and accuracy of object detection.By this method,it performs a higher quality on mass object detection tasks with fewer detection errors.
基金This research was funded by the Fundamental Research Funds for the Central Universities,3072022TS0605the China University Industry-University-Research Innovation Fund,2021LDA10004.
文摘The COVID-19 virus is usually spread by small droplets when talking,coughing and sneezing,so maintaining physical distance between people is necessary to slow the spread of the virus.The World Health Organization(WHO)recommends maintaining a social distance of at least six feet.In this paper,we developed a real-time pedestrian social distance risk alert system for COVID-19,whichmonitors the distance between people in real-time via video streaming and provides risk alerts to the person in charge,thus avoiding the problem of too close social distance between pedestrians in public places.We design a lightweight convolutional neural network architecture to detect the distance between people more accurately.In addition,due to the limitation of camera placement,the previous algorithm based on flat view is not applicable to the social distance calculation for cameras,so we designed and developed a perspective conversion module to reduce the image in the video to a bird’s eye view,which can avoid the error caused by the elevation view and thus provide accurate risk indication to the user.We selected images containing only person labels in theCOCO2017 dataset to train our networkmodel.The experimental results show that our network model achieves 82.3%detection accuracy and performs significantly better than other mainstream network architectures in the three metrics of Recall,Precision and mAP,proving the effectiveness of our system and the efficiency of our technology.
文摘In pedestrian re-recognition,the traditional pedestrian re-recognition method will be affected by the changes of background,veil,clothing and so on,which will make the recognition effect decline.In order to reduce the impact of background,veil,clothing and other changes on the recognition effect,this paper proposes a pedestrian re-recognition method based on the cycle-consistent generative adversarial network and multifeature fusion.By comparing the measured distance between two pedestrians,pedestrian re-recognition is accomplished.Firstly,this paper uses Cycle GAN to transform and expand the data set,so as to reduce the influence of pedestrian posture changes as much as possible.The method consists of two branches:global feature extraction and local feature extraction.Then the global feature and local feature are fused.The fused features are used for comparison measurement learning,and the similarity scores are calculated to sort the samples.A large number of experimental results on large data sets CUHK03 and VIPER show that this new method reduces the influence of background,veil,clothing and other changes on the recognition effect.