The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon productio...The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon production and the management of fluxes particularly the groundwater venues. A comprehensive study is thus conducted to develop a dynamic and analytic model for diagnosing the production performances with a particular view on the management of groundwater venues. The three main concerned reservoirs subdivided on subunits evidence their proper characteristics. The porous media, their densities, the internal flows and the water injection techniques such as water flooding were thus adopted. The oil viscosity variability within the reservoirs creates different levels of mobility between water and oil, highlighting the challenges of water management. The material balance model and the behavior of the well analysis were taken in consideration within the identified aquifer, emphasizing the importance of keeping the pressure through injection. The control of water productions, the management of the reservoir, the well strategical position and the specific completions lead to the model functioning. In addition, the CO log and the Pulsed Neutron indicate their limitations as a result of the water salinity and the porosity of the aquifer. The management of groundwater venues at Badila requires various approaches throughout the lifetime of the Crystal field such as the data acquisition and remediation actions and prevention, under a permanent monitoring of the dynamic fluxes in the reservoirs.展开更多
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta...The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.展开更多
Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional ...Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.展开更多
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient...The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.展开更多
Activity 1.Think about the following questions and write down your answers before reading the text.1.If you were to design the widest avenue in the world,what features would you include to make it unique and functiona...Activity 1.Think about the following questions and write down your answers before reading the text.1.If you were to design the widest avenue in the world,what features would you include to make it unique and functional?2.Suppose there is a very wide avenue in your hometown,how do you think it would change peoples daily lives and social interactions?展开更多
Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of ...Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of cultural industry management talents in colleges and universities.First of all,based on SWOT analysis,it is found that colleges and universities have rich educational resources and policy support,but they face challenges such as insufficient practical teaching and intensified international competition.External opportunities come from the rapid development of the cultivation of cultural industry management talents and policy promotion,while threats come from global market competition and talent flow.Secondly,PEST analysis reveals the key factors in the macro-environment:at the political level,the state vigorously supports the cultivation of cultural industry management talents;at the economic level,the market demand for cultural industries is strong;at the social level,the public cultural consumption is upgraded;at the technological level,digital transformation promotes industry innovation.On this basis,this paper puts forward a multi-level strategic system covering theoretical education,practical skill improvement,interdisciplinary integration,and international vision training.The system aims to solve the problems existing in talent training in colleges and universities and cultivate high-quality cultural industry management talents with theoretical knowledge,practical skills,and global vision,so as to adapt to the increasingly complex and diversified cultural industry management talents market demand and promote the long-term development of the industry.展开更多
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi...With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.展开更多
From the aspects of time characteristics,spatial characteristics and subjective will of sports activities,the preference of sports venues for the elderly in colleges and universities is investigated through questionna...From the aspects of time characteristics,spatial characteristics and subjective will of sports activities,the preference of sports venues for the elderly in colleges and universities is investigated through questionnaires and interviews,and further analysis and studies are conducted by using the abstract method and discrete selection model,so as to explore the factors affecting the preference of sports venues for the elderly in colleges and universities and their importance.The results show that the factors affecting preference of the elderly in colleges and universities for sports venues from high to low are site greening,site amenities,site shade facilities,site rest seats,site lighting facilities,site size,site fitness and leisure facilities,site walking distance and site quietness degree.Among them,the walking distance of the site is negatively correlated,and the quiet degree of the site has no significant effect,and the other 7 items are positively correlated.The research on the preference of sports venues for the elderly in colleges and universities is helpful to the location and construction of sports venues,so as to provide comfortable and satisfactory sports space for the elderly,which has important practical significance.展开更多
We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform...We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.展开更多
Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in th...Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries.展开更多
文摘The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon production and the management of fluxes particularly the groundwater venues. A comprehensive study is thus conducted to develop a dynamic and analytic model for diagnosing the production performances with a particular view on the management of groundwater venues. The three main concerned reservoirs subdivided on subunits evidence their proper characteristics. The porous media, their densities, the internal flows and the water injection techniques such as water flooding were thus adopted. The oil viscosity variability within the reservoirs creates different levels of mobility between water and oil, highlighting the challenges of water management. The material balance model and the behavior of the well analysis were taken in consideration within the identified aquifer, emphasizing the importance of keeping the pressure through injection. The control of water productions, the management of the reservoir, the well strategical position and the specific completions lead to the model functioning. In addition, the CO log and the Pulsed Neutron indicate their limitations as a result of the water salinity and the porosity of the aquifer. The management of groundwater venues at Badila requires various approaches throughout the lifetime of the Crystal field such as the data acquisition and remediation actions and prevention, under a permanent monitoring of the dynamic fluxes in the reservoirs.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077232 and 42077235)the Key Research and Development Plan of Jiangsu Province(Grant No.BE2022156).
文摘The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.
基金supported in part by the Research on the Application of Multimodal Artificial Intelligence in Diagnosis and Treatment of Type 2 Diabetes under Grant No.2020SK50910in part by the Hunan Provincial Natural Science Foundation of China under Grant 2023JJ60020.
文摘Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
文摘The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.
文摘Activity 1.Think about the following questions and write down your answers before reading the text.1.If you were to design the widest avenue in the world,what features would you include to make it unique and functional?2.Suppose there is a very wide avenue in your hometown,how do you think it would change peoples daily lives and social interactions?
基金Achievements of Sichuan Fine Arts Institute Education and Teaching Reform Research Project“Construction of Multi-Level Strategic System for Cultivating Cultural Industry Management Talents in Colleges and Universities”(2024jg10)。
文摘Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of cultural industry management talents in colleges and universities.First of all,based on SWOT analysis,it is found that colleges and universities have rich educational resources and policy support,but they face challenges such as insufficient practical teaching and intensified international competition.External opportunities come from the rapid development of the cultivation of cultural industry management talents and policy promotion,while threats come from global market competition and talent flow.Secondly,PEST analysis reveals the key factors in the macro-environment:at the political level,the state vigorously supports the cultivation of cultural industry management talents;at the economic level,the market demand for cultural industries is strong;at the social level,the public cultural consumption is upgraded;at the technological level,digital transformation promotes industry innovation.On this basis,this paper puts forward a multi-level strategic system covering theoretical education,practical skill improvement,interdisciplinary integration,and international vision training.The system aims to solve the problems existing in talent training in colleges and universities and cultivate high-quality cultural industry management talents with theoretical knowledge,practical skills,and global vision,so as to adapt to the increasingly complex and diversified cultural industry management talents market demand and promote the long-term development of the industry.
基金supported by the National Natural Science Foundation of China under Grant 52077146.
文摘With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.
文摘From the aspects of time characteristics,spatial characteristics and subjective will of sports activities,the preference of sports venues for the elderly in colleges and universities is investigated through questionnaires and interviews,and further analysis and studies are conducted by using the abstract method and discrete selection model,so as to explore the factors affecting the preference of sports venues for the elderly in colleges and universities and their importance.The results show that the factors affecting preference of the elderly in colleges and universities for sports venues from high to low are site greening,site amenities,site shade facilities,site rest seats,site lighting facilities,site size,site fitness and leisure facilities,site walking distance and site quietness degree.Among them,the walking distance of the site is negatively correlated,and the quiet degree of the site has no significant effect,and the other 7 items are positively correlated.The research on the preference of sports venues for the elderly in colleges and universities is helpful to the location and construction of sports venues,so as to provide comfortable and satisfactory sports space for the elderly,which has important practical significance.
基金the Strategic Priority Research Program of CAS(Grant No.XDC07020200)the National Key R&D Program of China(Grants No.2018YFA0306600)+5 种基金the National Natural Science Foundation of China(Grant Nos.11974330 and 92165206)the Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH004)the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0302200 and 2021ZD0301603)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY050000)the Hefei Comprehensive National Science Centerthe Fundamental Research Funds for the Central Universities。
文摘We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.
文摘Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries.