The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high...Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.展开更多
Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hier...Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect.展开更多
In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clini...In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clinical operating environments,endoscopic images often suffer from challenges such as low texture,uneven illumination,and non-rigid structures,which affect feature observation and extraction.This can severely impact surgical navigation or clinical diagnosis due to missing feature points in endoscopic images,leading to treatment and postoperative recovery issues for patients.To address these challenges,this paper introduces,for the first time,a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion(ASFF)module based on the lightweight architecture of EfficientViT.Additionally,a novel lightweight feature extraction and matching network based on attention mechanism is proposed.This network dynamically adjusts attention weights for cross-modal information from grayscale images and optical flow images through a dual-branch Siamese network.It extracts static and dynamic information features ranging from low-level to high-level,and from local to global,ensuring robust feature extraction across different widths,noise levels,and blur scenarios.Global and local matching are performed through a multi-level cascaded attention mechanism,with cross-channel attention introduced to simultaneously extract low-level and high-level features.Extensive ablation experiments and comparative studies are conducted on the HyperKvasir,EAD,M2caiSeg,CVC-ClinicDB,and UCL synthetic datasets.Experimental results demonstrate that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4%in accuracy(Acc),while also enhancing runtime performance and storage efficiency.When compared with the complex DenseDescriptor feature extraction network,the difference in Acc is less than 7.22%,and IoU calculation results on specific datasets outperform complex dense models.Furthermore,this method increases the F1 score by 33.2%and accelerates runtime by 70.2%.It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,with feature extraction and matching performance comparable to existing complex models but with faster speed and higher cost-effectiveness.展开更多
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera...The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable.展开更多
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
Image captioning involves two different major modalities(image and sentence)that convert a given image into a language that adheres to visual semantics.Almost all methods first extract image features to reduce the dif...Image captioning involves two different major modalities(image and sentence)that convert a given image into a language that adheres to visual semantics.Almost all methods first extract image features to reduce the difficulty of visual semantic embedding and then use the caption model to generate fluent sentences.The Convolutional Neural Network(CNN)is often used to extract image features in image captioning,and the use of object detection networks to extract region features has achieved great success.However,the region features retrieved by this method are object-level and do not pay attention to fine-grained details because of the detection model’s limitation.We offer an approach to address this issue that more properly generates captions by fusing fine-grained features and region features.First,we extract fine-grained features using a panoramic segmentation algorithm.Second,we suggest two fusion methods and contrast their fusion outcomes.An X-linear Attention Network(X-LAN)serves as the foundation for both fusion methods.According to experimental findings on the COCO dataset,the two-branch fusion approach is superior.It is important to note that on the COCO Karpathy test split,CIDEr is increased up to 134.3%in comparison to the baseline,highlighting the potency and viability of our method.展开更多
Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fin...Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered,and dissimilar images are separated in the low embedding space.Previous works primarily focused on defining local structure loss functions like triplet loss,pairwise loss,etc.However,training via these approaches takes a long training time,and they have poor accuracy.Additionally,representations learned through it tend to tighten up in the embedded space and lose generalizability to unseen classes.This paper proposes a noise-assisted representation learning method for fine-grained image retrieval to mitigate these issues.In the proposed work,class manifold learning is performed in which positive pairs are created with noise insertion operation instead of tightening class clusters.And other instances are treated as negatives within the same cluster.Then a loss function is defined to penalize when the distance between instances of the same class becomes too small relative to the noise pair in that class in embedded space.The proposed approach is validated on CARS-196 and CUB-200 datasets and achieved better retrieval results(85.38%recall@1 for CARS-196%and 70.13%recall@1 for CUB-200)compared to other existing methods.展开更多
Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images ha...Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking.展开更多
This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include pictu...This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms.展开更多
Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods...Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.展开更多
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans...Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.展开更多
We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance...We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance the capability of deep neural networks in extracting geometric attributes from depth images,we developed a novel deep geometric convolution operator(DGConv).DGConv is utilized to construct a deep local geometric feature extraction module,facilitating a more comprehensive exploration of the intrinsic geometric information within depth images.Secondly,we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network(FCN8)to establish a high-performance deep neural network algorithm tailored for depth image segmentation.Concurrently,we enhance the FCN8 detection head by separating the segmentation and classification processes.This enhancement significantly boosts the network’s overall detection capability.Thirdly,for a comprehensive assessment of our proposed algorithm and its applicability in real-world industrial settings,we curated a line-scan image dataset featuring weld seams.This dataset,named the Standardized Linear Depth Profile(SLDP)dataset,was collected from actual industrial sites where autonomous robots are in operation.Ultimately,we conducted experiments utilizing the SLDP dataset,achieving an average accuracy of 92.7%.Our proposed approach exhibited a remarkable performance improvement over the prior method on the identical dataset.Moreover,we have successfully deployed the proposed algorithm in genuine industrial environments,fulfilling the prerequisites of unmanned robot operations.展开更多
The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectiv...The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.展开更多
Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particula...Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis.展开更多
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh...Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.展开更多
Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such...Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM.展开更多
AIM:To describe the clinical characteristics of eyes using multimodal imaging features with acute macular neuroretinopathy(AMN)lesions following severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.MET...AIM:To describe the clinical characteristics of eyes using multimodal imaging features with acute macular neuroretinopathy(AMN)lesions following severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.METHODS:Retrospective case series study.From December 18,2022 to February 14,2023,previously healthy cases within 1-week infection with SARS-CoV-2 and examined at Tianjin Eye Hospital to confirm the diagnosis of AMN were included in the study.Totally 5 males and 9 females[mean age:29.93±10.32(16-49)y]were presented for reduced vision,with or without blurred vision.All patients underwent best corrected visual acuity(BCVA),intraocular pressure,slit lamp microscopy,indirect fundoscopy.Simultaneously,multimodal imagings fundus photography(45°or 200°field of view)was performed in 7 cases(14 eyes).Near infrared(NIR)fundus photography was performed in 9 cases(18 eyes),optical coherence tomography(OCT)in 5 cases(10 eyes),optical coherence tomography angiography(OCTA)in 9 cases(18 eyes),and fundus fluorescence angiography(FFA)in 3 cases(6 eyes).Visual field was performed in 1 case(2 eyes).RESULTS:Multimodal imaging findings data from 14 patients with AMN were reviewed.All eyes demonstrated different extent hyperreflective lesions at the level of the inner nuclear layer and/or outer plexus layer on OCT or OCTA.Fundus photography(45°or 200°field of view)showed irregular hypo-reflective lesion around the fovea in 7 cases(14 eyes).OCTA demonstrated that the superficial retinal capillary plexus(SCP)vascular density,deep capillary plexus(DCP)vascular density and choriocapillaris(CC)vascular density was reduced in 9 case(18 eyes).Among the follow-up cases(2 cases),vascular density increased in 1 case with elevated BCVA;another case has vascular density decrease in one eye and basically unchanged in other eye.En face images of the ellipsoidal zone and interdigitation zone injury showed a low wedge-shaped reflection contour appearance.NIR image mainly show the absence of the outer retinal interdigitation zone in AMN.No abnormal fluorescence was observed in FFA.Corresponding partial defect of the visual field were visualized via perimeter in one case.CONCLUSION:The morbidity of SARS-CoV-2 infection with AMN is increased.Ophthalmologists should be aware of the possible,albeit rare,AMN after SARS-CoV-2 infection and focus on multimodal imaging features.OCT,OCTA,and infrared fundus phase are proved to be valuable tools for detection of AMN in patients with SARS-CoV-2.展开更多
The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the qu...The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the query and the candidate image by fusing the global feature of the query image and the text feature. However, the text usually corresponds to the local feature of the query image rather than the global feature. Therefore, in this paper, we propose a framework of image retrieval with text manipulation by local feature modification(LFM-IR) which can focus on the related image regions and attributes and perform modification. A spatial attention module and a channel attention module are designed to realize the semantic mapping between image and text. We achieve excellent performance on three benchmark datasets, namely Color-Shape-Size(CSS), Massachusetts Institute of Technology(MIT) States and Fashion200K(+8.3%, +0.7% and +4.6% in R@1).展开更多
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ...The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.展开更多
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
基金supported by National Key R&D Program of China[2022YFC2402400]the National Natural Science Foundation of China[Grant No.62275062]Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology[Grant No.2020B121201010-4].
文摘Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.
基金Major Program of National Natural Science Foundation of China(NSFC12292980,NSFC12292984)National Key R&D Program of China(2023YFA1009000,2023YFA1009004,2020YFA0712203,2020YFA0712201)+2 种基金Major Program of National Natural Science Foundation of China(NSFC12031016)Beijing Natural Science Foundation(BNSFZ210003)Department of Science,Technology and Information of the Ministry of Education(8091B042240).
文摘Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect.
基金This work was supported by Science and Technology Cooperation Special Project of Shijiazhuang(SJZZXA23005).
文摘In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clinical operating environments,endoscopic images often suffer from challenges such as low texture,uneven illumination,and non-rigid structures,which affect feature observation and extraction.This can severely impact surgical navigation or clinical diagnosis due to missing feature points in endoscopic images,leading to treatment and postoperative recovery issues for patients.To address these challenges,this paper introduces,for the first time,a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion(ASFF)module based on the lightweight architecture of EfficientViT.Additionally,a novel lightweight feature extraction and matching network based on attention mechanism is proposed.This network dynamically adjusts attention weights for cross-modal information from grayscale images and optical flow images through a dual-branch Siamese network.It extracts static and dynamic information features ranging from low-level to high-level,and from local to global,ensuring robust feature extraction across different widths,noise levels,and blur scenarios.Global and local matching are performed through a multi-level cascaded attention mechanism,with cross-channel attention introduced to simultaneously extract low-level and high-level features.Extensive ablation experiments and comparative studies are conducted on the HyperKvasir,EAD,M2caiSeg,CVC-ClinicDB,and UCL synthetic datasets.Experimental results demonstrate that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4%in accuracy(Acc),while also enhancing runtime performance and storage efficiency.When compared with the complex DenseDescriptor feature extraction network,the difference in Acc is less than 7.22%,and IoU calculation results on specific datasets outperform complex dense models.Furthermore,this method increases the F1 score by 33.2%and accelerates runtime by 70.2%.It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,with feature extraction and matching performance comparable to existing complex models but with faster speed and higher cost-effectiveness.
基金the National Natural Science Foundation of China(No.61976080)the Academic Degrees&Graduate Education Reform Project of Henan Province(No.2021SJGLX195Y)+1 种基金the Teaching Reform Research and Practice Project of Henan Undergraduate Universities(No.2022SYJXLX008)the Key Project on Research and Practice of Henan University Graduate Education and Teaching Reform(No.YJSJG2023XJ006)。
文摘The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable.
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 6150140in part by the Youth Innovation Project(21032158-Y)of Zhejiang Sci-Tech University.
文摘Image captioning involves two different major modalities(image and sentence)that convert a given image into a language that adheres to visual semantics.Almost all methods first extract image features to reduce the difficulty of visual semantic embedding and then use the caption model to generate fluent sentences.The Convolutional Neural Network(CNN)is often used to extract image features in image captioning,and the use of object detection networks to extract region features has achieved great success.However,the region features retrieved by this method are object-level and do not pay attention to fine-grained details because of the detection model’s limitation.We offer an approach to address this issue that more properly generates captions by fusing fine-grained features and region features.First,we extract fine-grained features using a panoramic segmentation algorithm.Second,we suggest two fusion methods and contrast their fusion outcomes.An X-linear Attention Network(X-LAN)serves as the foundation for both fusion methods.According to experimental findings on the COCO dataset,the two-branch fusion approach is superior.It is important to note that on the COCO Karpathy test split,CIDEr is increased up to 134.3%in comparison to the baseline,highlighting the potency and viability of our method.
文摘Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered,and dissimilar images are separated in the low embedding space.Previous works primarily focused on defining local structure loss functions like triplet loss,pairwise loss,etc.However,training via these approaches takes a long training time,and they have poor accuracy.Additionally,representations learned through it tend to tighten up in the embedded space and lose generalizability to unseen classes.This paper proposes a noise-assisted representation learning method for fine-grained image retrieval to mitigate these issues.In the proposed work,class manifold learning is performed in which positive pairs are created with noise insertion operation instead of tightening class clusters.And other instances are treated as negatives within the same cluster.Then a loss function is defined to penalize when the distance between instances of the same class becomes too small relative to the noise pair in that class in embedded space.The proposed approach is validated on CARS-196 and CUB-200 datasets and achieved better retrieval results(85.38%recall@1 for CARS-196%and 70.13%recall@1 for CUB-200)compared to other existing methods.
基金the China Postdoctoral Science Foundation under Grant 2021M701838the Natural Science Foundation of Hainan Province of China under Grants 621MS042 and 622MS067the Hainan Medical University Teaching Achievement Award Cultivation under Grant HYjcpx202209.
文摘Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking.
基金the appreciation to the Deanship of Postgraduate Studies and ScientificResearch atMajmaah University for funding this research work through the Project Number R-2024-922.
文摘This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms.
基金Ministry of Education,Youth and Sports of the Chezk Republic,Grant/Award Numbers:SP2023/039,SP2023/042the European Union under the REFRESH,Grant/Award Number:CZ.10.03.01/00/22_003/0000048。
文摘Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.
基金supported by the National Key R&D Program of China(2018AAA0102100)the National Natural Science Foundation of China(No.62376287)+3 种基金the International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province(2021CB1013)the Key Research and Development Program of Hunan Province(2022SK2054)the Natural Science Foundation of Hunan Province(No.2022JJ30762,2023JJ70016)the 111 Project under Grant(No.B18059).
文摘Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.
基金This work was supported by the National Natural Science Foundation of China(Grant No.U20A20197).
文摘We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance the capability of deep neural networks in extracting geometric attributes from depth images,we developed a novel deep geometric convolution operator(DGConv).DGConv is utilized to construct a deep local geometric feature extraction module,facilitating a more comprehensive exploration of the intrinsic geometric information within depth images.Secondly,we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network(FCN8)to establish a high-performance deep neural network algorithm tailored for depth image segmentation.Concurrently,we enhance the FCN8 detection head by separating the segmentation and classification processes.This enhancement significantly boosts the network’s overall detection capability.Thirdly,for a comprehensive assessment of our proposed algorithm and its applicability in real-world industrial settings,we curated a line-scan image dataset featuring weld seams.This dataset,named the Standardized Linear Depth Profile(SLDP)dataset,was collected from actual industrial sites where autonomous robots are in operation.Ultimately,we conducted experiments utilizing the SLDP dataset,achieving an average accuracy of 92.7%.Our proposed approach exhibited a remarkable performance improvement over the prior method on the identical dataset.Moreover,we have successfully deployed the proposed algorithm in genuine industrial environments,fulfilling the prerequisites of unmanned robot operations.
基金Young Innovative Talents Project of Guangdong Ordinary Universities(No.2022KQNCX225)School-level Teaching and Research Project of Guangzhou City Polytechnic(No.2022xky046)。
文摘The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.
文摘Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Small Group Research Project under Grant Number RGP1/261/45.
文摘Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.
文摘Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM.
文摘AIM:To describe the clinical characteristics of eyes using multimodal imaging features with acute macular neuroretinopathy(AMN)lesions following severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.METHODS:Retrospective case series study.From December 18,2022 to February 14,2023,previously healthy cases within 1-week infection with SARS-CoV-2 and examined at Tianjin Eye Hospital to confirm the diagnosis of AMN were included in the study.Totally 5 males and 9 females[mean age:29.93±10.32(16-49)y]were presented for reduced vision,with or without blurred vision.All patients underwent best corrected visual acuity(BCVA),intraocular pressure,slit lamp microscopy,indirect fundoscopy.Simultaneously,multimodal imagings fundus photography(45°or 200°field of view)was performed in 7 cases(14 eyes).Near infrared(NIR)fundus photography was performed in 9 cases(18 eyes),optical coherence tomography(OCT)in 5 cases(10 eyes),optical coherence tomography angiography(OCTA)in 9 cases(18 eyes),and fundus fluorescence angiography(FFA)in 3 cases(6 eyes).Visual field was performed in 1 case(2 eyes).RESULTS:Multimodal imaging findings data from 14 patients with AMN were reviewed.All eyes demonstrated different extent hyperreflective lesions at the level of the inner nuclear layer and/or outer plexus layer on OCT or OCTA.Fundus photography(45°or 200°field of view)showed irregular hypo-reflective lesion around the fovea in 7 cases(14 eyes).OCTA demonstrated that the superficial retinal capillary plexus(SCP)vascular density,deep capillary plexus(DCP)vascular density and choriocapillaris(CC)vascular density was reduced in 9 case(18 eyes).Among the follow-up cases(2 cases),vascular density increased in 1 case with elevated BCVA;another case has vascular density decrease in one eye and basically unchanged in other eye.En face images of the ellipsoidal zone and interdigitation zone injury showed a low wedge-shaped reflection contour appearance.NIR image mainly show the absence of the outer retinal interdigitation zone in AMN.No abnormal fluorescence was observed in FFA.Corresponding partial defect of the visual field were visualized via perimeter in one case.CONCLUSION:The morbidity of SARS-CoV-2 infection with AMN is increased.Ophthalmologists should be aware of the possible,albeit rare,AMN after SARS-CoV-2 infection and focus on multimodal imaging features.OCT,OCTA,and infrared fundus phase are proved to be valuable tools for detection of AMN in patients with SARS-CoV-2.
基金Foundation items:Shanghai Sailing Program,China (No. 21YF1401300)Shanghai Science and Technology Innovation Action Plan,China (No.19511101802)Fundamental Research Funds for the Central Universities,China (No.2232021D-25)。
文摘The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the query and the candidate image by fusing the global feature of the query image and the text feature. However, the text usually corresponds to the local feature of the query image rather than the global feature. Therefore, in this paper, we propose a framework of image retrieval with text manipulation by local feature modification(LFM-IR) which can focus on the related image regions and attributes and perform modification. A spatial attention module and a channel attention module are designed to realize the semantic mapping between image and text. We achieve excellent performance on three benchmark datasets, namely Color-Shape-Size(CSS), Massachusetts Institute of Technology(MIT) States and Fashion200K(+8.3%, +0.7% and +4.6% in R@1).
基金supported by the Key Research and Development Projects in Shaanxi Province(Program No.2021GY-306)the Innovation Capability Support Program of Shaanxi(Program No.2022KJXX-41)the Key Scientific and Technological Projects of Xi’an(Program No.2022JH-RGZN-0005).
文摘The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.