By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal...By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal' formula is defined, and then, rich coherent structures canbe found by selecting corresponding functions appropriately.展开更多
The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-le...The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-less system.Namely, by using a Backlund transformation and the MLVSA, we find a new general solution and define a new "universal formula". Then, some new (1+1)-dimensional coherent structures of this universal formula can be found by selecting corresponding functions appropriately. Specially, in some conditions, bell soliton and kink soliton can transform each other, which are illustrated graphically.展开更多
The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burge...The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burgers system, (2+1)-dimensional breaking soliton system, and (2+1)-dimensional Maccari system. Some new exact solutions are obtained and the universal formula obtained from many (2+1)-dimensional systems is extended or modified.展开更多
We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads ...We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads to abundant coherent structures. However, in the general nonintegrable case, an additional condition has to be introduced for these arbitrary functions. Although the additional condition has been introduced into the solutions of the nonintegrable KdV equation, there still exist many interesting solitary wave structures. Especially, the nonintegrable KdV equation possesses the breather-like localized excitations, and the similar static ring soliton solutions as in the integrable case. Furthermor,in the integrable case, the interaction between two travelling ring solitons is elastic, while in the nonintegrable case we cannot find even the single travelling ring soliton solution.展开更多
By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized co...By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.展开更多
In this letter, starting from a B?cklund transformation, a general solution of a (2+1)-dimensional integrable system is obtained by using the new variable separation approach.
A variable separation approach is proposed and extended to the (1+1)-dimensional physics system. The variable separation solution of (1-F1)-dimensional Ito system is obtained. Some special types of solutions such...A variable separation approach is proposed and extended to the (1+1)-dimensional physics system. The variable separation solution of (1-F1)-dimensional Ito system is obtained. Some special types of solutions such as non-propagating solitary wave solution, propagating solitary wave solution and looped soliton solution are found by selecting the arbitrary function appropriately.展开更多
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor...With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.展开更多
Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation m...Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.展开更多
Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solu...Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solutions, periodic-soliton solutions, and Weierstrass function solutions. Based on a periodic-soliton solution, a new type of localized excitation, i.e., the four-dromion soliton, is constructed and some evolutional properties of this localized structure are briefly discussed.展开更多
Starting from the symbolic computation system Maple and Riccati equation mapping approach and a linear variable separation approach, a new family of non-traveling wave solutions of the (1 + 1)-dimensional Burgers syst...Starting from the symbolic computation system Maple and Riccati equation mapping approach and a linear variable separation approach, a new family of non-traveling wave solutions of the (1 + 1)-dimensional Burgers system is derived.展开更多
文摘By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal' formula is defined, and then, rich coherent structures canbe found by selecting corresponding functions appropriately.
文摘The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-less system.Namely, by using a Backlund transformation and the MLVSA, we find a new general solution and define a new "universal formula". Then, some new (1+1)-dimensional coherent structures of this universal formula can be found by selecting corresponding functions appropriately. Specially, in some conditions, bell soliton and kink soliton can transform each other, which are illustrated graphically.
文摘The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burgers system, (2+1)-dimensional breaking soliton system, and (2+1)-dimensional Maccari system. Some new exact solutions are obtained and the universal formula obtained from many (2+1)-dimensional systems is extended or modified.
文摘We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads to abundant coherent structures. However, in the general nonintegrable case, an additional condition has to be introduced for these arbitrary functions. Although the additional condition has been introduced into the solutions of the nonintegrable KdV equation, there still exist many interesting solitary wave structures. Especially, the nonintegrable KdV equation possesses the breather-like localized excitations, and the similar static ring soliton solutions as in the integrable case. Furthermor,in the integrable case, the interaction between two travelling ring solitons is elastic, while in the nonintegrable case we cannot find even the single travelling ring soliton solution.
基金The project supported by National Natural Science Foundation of China under Grant No.10172056+2 种基金the Natural Science Foundation of Zhengjiang Provincethe Foundation of Zhengjiang Lishui College under Grant Nos.KZ03009 and KZ03005
文摘By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.
文摘In this letter, starting from a B?cklund transformation, a general solution of a (2+1)-dimensional integrable system is obtained by using the new variable separation approach.
文摘A variable separation approach is proposed and extended to the (1+1)-dimensional physics system. The variable separation solution of (1-F1)-dimensional Ito system is obtained. Some special types of solutions such as non-propagating solitary wave solution, propagating solitary wave solution and looped soliton solution are found by selecting the arbitrary function appropriately.
基金supported by the Scientific Research Foundation of Beijing Information Science and Technology UniversityScientific Creative Platform Foundation of Beijing Municipal Commission of Education
文摘With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.
基金The author would like to thank Profs. Jie-Fang Zhang and Chun-Long Zheng for helpful discussions.
文摘Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.
基金supported by National Natural Science Foundation of China under Grant No.10272071the Natural Science Foundation of Zhejiang Province under Grant No.Y606049
文摘Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solutions, periodic-soliton solutions, and Weierstrass function solutions. Based on a periodic-soliton solution, a new type of localized excitation, i.e., the four-dromion soliton, is constructed and some evolutional properties of this localized structure are briefly discussed.
文摘Starting from the symbolic computation system Maple and Riccati equation mapping approach and a linear variable separation approach, a new family of non-traveling wave solutions of the (1 + 1)-dimensional Burgers system is derived.