期刊文献+
共找到3,162篇文章
< 1 2 159 >
每页显示 20 50 100
Research and development on mechanism of removal of indoor volatile organic compounds by plants
1
作者 LI Fangwei CUI Long +2 位作者 CHENG Yan XUE Yonggang HUANG Yu 《地球环境学报》 CSCD 2024年第4期583-595,共13页
Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture ha... Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2) and H_(2)O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2) are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2) and H_(2)O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research. 展开更多
关键词 plantS VOCS removal mechanism indoor air purification MICROORGANISM
下载PDF
Study on a Bowl-based Mechanism for Transplanting Potted Strawberry Seedlings
2
作者 Yin Da-qing Yang Yu-chao +2 位作者 Zhou Mai-le Wei Ming-xu Wang Jin-wu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第1期56-68,共13页
To improve the efficiency of fetching and transplanting seedlings for the mechanization of strawberry planting,an integrated transplanting mechanism was designed with protruding,fetching and planting performance to ac... To improve the efficiency of fetching and transplanting seedlings for the mechanization of strawberry planting,an integrated transplanting mechanism was designed with protruding,fetching and planting performance to achieve rapid fetching and pushing bowl movements.According to the working principle of the slewing mechanism,a kinematics model and the optimization goal were established,respectively.Based on visual auxiliary analysis software,optimal parameters were obtained.A three-dimensional model was established to obtain a simulation trajectory by means of a virtual simulation design analysis.Three-dimensional printing technology was used to manufacture the test prototype,and the actual working trajectories of the test prototype were extracted using high-speed photography technology,which verified the consistency of the actual trajectory with the theoretical and simulated trajectories.A prototype transplanting experiment was performed with the success rate of seedling extraction of 91.2%and excellent planting rate of 82.8%,which met the requirements for integrated strawberry harvesting,planting and transplanting.The experimental results verified the correctness and feasibility of the design of integrated transplanting mechanism. 展开更多
关键词 potted strawberry seedlings potted seedling transplanting integrated planting mechanism protruding and pushing bowl type parameter optimization
下载PDF
Effects of Planting Density on Yield and Mechanical Harvesting Loss Rate of Brassica napus L. 被引量:8
3
作者 浦惠明 胡茂龙 +1 位作者 龙卫华 高建芹 《Agricultural Science & Technology》 CAS 2015年第1期40-46,共7页
[Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were e... [Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were employed in field experiments. The two-factor split plot design and randomized complete block design were adopted. The rapeseed seeds were directly sowed with four different seeding rates (1.50, 2.25, 3.00 and 3.75 kg/hm2). A total of four treatments were designed (112 500, 225 000, 337 500 and 450 000 plants/hm2). After ripe, the rapeseed was harvested with harvester. Then the yield and harvesting loss rate were determined. [Result] When the planting density ranged from 112 500 to 450 000 plants/hm2, the mechanical harvesting loss rate was decreased with the increase of planting density (Ningza 19, 7.54%-4.01%; Ningza 21, 7.19%-3.81%). The total loss rates were all below 5% for the high plant densities, 337 500 and 450 000 plants/hm2. High planting density had certain regulating effects on plant type of rapeseed, including reducing plant height, reducing biomass per plant, reducing branch pod numbers per plant, weakening crossing and tangling among stems and improving ripening uniformity of pods. All the changes above were all conducive to reducing mechanical harvesting loss. In addition, the test results showed after the pods grew to maturity, especially when pods were yellow and the moisture content in grains was reduced to 11%, the mechanical harvesting loss only accounted for about 1% of the total field loss. In addition, the shattering loss, caused by mild col- lision, represented more than 90%, and the cleaning loss, occurred during the threshing and cleaning process, represented 4%-8% of the total field loss. The un- harvesting loss accounted for approximately 1% of the total loss. The shattering loss is closely related to cultivar characteristics, planting density, production level and other agronomic factors. The cleaning loss is determined by properties of harvesting machines. The unharvesting loss depends on mechanical properties ad skills of workers or farmers who drive harvesting machines. [Conclusion] In order to reduce mechanical harvesting loss, the rapeseed production should be improved from the perspectives of agricultural machinery and agronomic measures. 展开更多
关键词 CROPS HARVEST LOSS RAPESEED mechanical harvesting planting density
下载PDF
Studies on the Reproductive Biology and Endangerment Mechanism of the Endangered Plant Manglietia aromatica 被引量:12
4
作者 潘跃芝 梁汉兴 龚洵 《Acta Botanica Sinica》 CSCD 2003年第3期311-316,共6页
The embryogenesis, pollen germination, floral character and seed physiology of the endangered plant Manglietia aromatica Dandy were investigated. Based on this study, this species has very low seed set rate. The abort... The embryogenesis, pollen germination, floral character and seed physiology of the endangered plant Manglietia aromatica Dandy were investigated. Based on this study, this species has very low seed set rate. The abortion rate of functional megaspores in all the ovules is 27.9%, the egg cell abortion rate of mature embryo sacs is up to 80%, and the germination rate of pollen grains is as low as nearly 0.01%. In addition, the floral structure appears to be another limited factor for the effective pollination of this species. The endangerment mechanism of this species seems to be comprehensive. Human's destroying actions are the direct factors that have made the population degenerate quickly; low reproductive ability and the destroyed environments are the main reasons that prevent the population from renovating and spreading. Therefore, the conservation measures suggested by this study are to research the breed technology, artificial population renovating, in situ conservation, and ex situ conservation. 展开更多
关键词 endangered plant Manglietia aromatica reproductive biology endangerment mechanisms
下载PDF
Research Progress of Mechanism of Action of Plant Growth Promoting Rhizobacteria 被引量:7
5
作者 夏艳 徐茜 +3 位作者 林勇 陈志厚 孔凡玉 张成省 《Agricultural Science & Technology》 CAS 2014年第1期87-90,110,共5页
The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria,... The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production. 展开更多
关键词 plant growth promoting rhizobacteria(PGPR) mechanism of action Ex-cellent strains
下载PDF
A Study on Alien Invasive Plants from the Interactive Mechanism between Species Niche and Material/Energy Flow 被引量:3
6
作者 陈剑 喻庆国 杨宇明 《Agricultural Science & Technology》 CAS 2011年第1期14-19,共6页
[Objective]This study was to reveal the essence of mechanism about how the alien invasive plants spread.[Method]Species niche and material/energy flow were used as basic research indicators to analyze the intrinsic me... [Objective]This study was to reveal the essence of mechanism about how the alien invasive plants spread.[Method]Species niche and material/energy flow were used as basic research indicators to analyze the intrinsic mechanism of alien plants invasion.[Result]Most of the invasive plants have not been explicitly defined and their effective control methods not brought forward.[Conclusion]Overrun of alien invasive plants depends on whether the niche of a species could be continuously met at spatial level.Based on this we put forward corresponding control measures,proposed an assumption to establish a cylinder-network model and discussed the definition of alien invasive plants. 展开更多
关键词 Species niche Material/energy flow Alien invasive plants Interactive mechanism
下载PDF
Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system 被引量:11
7
作者 XING Zhi-peng HU Ya-jie +8 位作者 QIAN Hai-jun CAO Wei-wei GUO Bao-wei WEI Hai-yan XU Ke HUO Zhong-yang ZHOU Gui-sheng DAI Qi-gen ZHANG Hong-cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1451-1466,共16页
Understanding the differences in yield traits of rice among pothole seedling of mechanical transplanting (PSMT), carpet seedling of mechanical transplanting (CSMT) and mechanical direct seeding (MDS) is of great... Understanding the differences in yield traits of rice among pothole seedling of mechanical transplanting (PSMT), carpet seedling of mechanical transplanting (CSMT) and mechanical direct seeding (MDS) is of great importance not only for rice scientists but also for rice farmers to develop a high-yield production system under mechanical conditions in a rice-wheat rotation system. However, such traits are yet to be studied among rice varieties ofjaponica-indica hybrid rice (JIHR),japonica conventional rice (JCR) and indica hybrid rice (IHR). Field experiments were conducted in 2014 and 2015, where six cultivars of the three rice types JIHR, JCR and IHR were grown individually with PSMT, CSMT and MDS methods, under respective managements for each method to achieve the maximum attainable yield. Results showed that (i) the PSMT significantly increased grain yield of JIHR by 22.0 and 7.1%, of JCR by 15.6 and 3.7% and of I HR by 22.5 and 7.4%, compared to MDS and CSMT on average across the two years, respectively. The highest yield was produced by the combination of JIHR and PSMT; (ii) high yield under PSMT was mainly attributed to large sink capacity and high-efficient dry matter accumulation. With sufficient panicles per hectare, the increase of spikelet number per panicle, especially the increase in spikelet number of the secondary rachis-branches was determined to be the optimal approach for developing a large sink capacity for rice under PSMT. The optimal tillers development, large leaf area index at heading stage, and high leaf area duration, crop growth rate and net assimilation rate during grain-filling phase could be the cause of sufficient dry matter accumulation for rice under PSMT; (iii) moreover, the PSMT favored plant growth as well as enriched the stems plus sheaths during grain-filling phase, as compared with CSMT and MDS. These results suggest that PSMT may be an alternative approach to increasing grain yield in a rice-wheat rotation system in the lower reaches of the Yangtze River in China. 展开更多
关键词 RICE grain yield mechanized planting method pothole seedling of mechanical transplanting
下载PDF
Reducing environmental risk of nitrogen by popularizing mechanically dense transplanting for rice production in China 被引量:6
8
作者 HUANG Min ZOU Ying-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第9期2362-2366,共5页
The high nitrogen(N)application rates typically used in Chinese cropping systems have led to diminishing returns for yields and have also imposed substantial environmental costs.Here,we estimate that the annual N loss... The high nitrogen(N)application rates typically used in Chinese cropping systems have led to diminishing returns for yields and have also imposed substantial environmental costs.Here,we estimate that the annual N loss from rice production in China reached approximately 2.6×109 kg from 2011 to 2015,and we demonstrate that adoption of the mechanically dense transplanting technique by producers is an effective method to reduce N loss from rice cropping systems without suffering a yield penalty. 展开更多
关键词 dense planting environmental risk mechanical transplanting nitrogen loss RICE
下载PDF
Temperature and solar radiation utilization of rice for yield formation with different mechanized planting methods in the lower reaches of the Yangtze River,China 被引量:9
9
作者 XING Zhi-peng WU Pei +8 位作者 ZHU Ming QIAN Hai-jun HU Ya-jie GUO Bao-wei WEI Hai-yan XU Ke HUO Zhong-yang DAI Qi-gen ZHANG Hong-cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第9期1923-1935,共13页
Several studies have demonstrated the effect of planting methods on rice yield, but information on the climate resources is limited. This study aims to reveal the effects of planting methods on climate resources assoc... Several studies have demonstrated the effect of planting methods on rice yield, but information on the climate resources is limited. This study aims to reveal the effects of planting methods on climate resources associated with rice yield in a rice-wheat rotation system in the lower reaches of the Yangtze River, China. Field experiments were conducted in 2014 and 2015 with two japonica, two indica hybrid, and two japonica-indica hybrid varieties grown under three mechanized planting methods: carpet seedling of mechanical transplanting(CT), mechanical direct seeding(DS), and pot-hole seedling of mechanical transplanting(PT). The rice yield and total dry matter under PT were greater than those under CT and DS methods. Besides, the entire growth duration and daily production showed significant positive relations with rice yield. Compared with CT and DS, the effective accumulated temperature and cumulative solar radiation of rice under PT were higher in phenological phases. In addition, the dry matter/effective accumulated temperature and solar energy utilization of rice under CT and DS were higher during vegetative phase and lower during reproductive and grain filling phases in contrast to PT. The mean daily temperature and mean daily solar radiation in the entire growth duration showed significant positive correlation with rice yield, total dry matter, and harvest index. This study demonstrated that when the mean daily temperature is 〈25.1°C in vegetative phase and 〉20.1°C in grain filling phase, rice yield could be increased by selecting mechanized planting methods. Most varieties under PT method exhibited high yield and climate resources use efficiency compared with CT and DS. In conclusion, the PT method could be a better cultivation measure for high rice yield, accompanied with high temperature and solar radiation use efficiency in a rice-wheat rotation system in the lower reaches of the Yangtze River, China. 展开更多
关键词 rice mechanized planting methods temperature solar radiation
下载PDF
Damage and deterioration mechanism and curing technique of concrete structure in main coal cleaning plants 被引量:10
10
作者 LV Heng-lin ZHAO Cheng-ming +2 位作者 SONG Lei MA Ying XU Chun-hua 《Mining Science and Technology》 EI CAS 2009年第6期750-755,共6页
Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian... Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the special natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants. 展开更多
关键词 main coal cleaning plants concrete structure operating environment reliability detection and inspection damage anddeteriorating mechanisms curing technique
下载PDF
Plant growth-promoting rhizobacteria(PGPR)and its mechanisms against plant diseases for sustainable agriculture and better productivity 被引量:2
11
作者 PRANAB DUTTA GOMATHY MUTHUKRISHNAN +12 位作者 SABARINATHAN KUTALINGAM GOPALASUBRAMAIAM RAJAKUMAR DHARMARAJ ANANTHI KARUPPAIAH KARTHIBA LOGANATHAN KALAISELVI PERIYASAMY MARUMUGAM PILLAI GK UPAMANYA SARODEE BORUAH LIPA DEB ARTI KUMARI MADHUSMITA MAHANTA PUNABATI HEISNAM AK MISHRA 《BIOCELL》 SCIE 2022年第8期1843-1859,共17页
Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with t... Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration. 展开更多
关键词 plant growth-promoting rhizobacteria BIOCONTROL plant diseases PGPR mechanisms Sustainable agriculture
下载PDF
Exploring the impact of high density planting system and deficit irrigation in cotton(Gossypium hirsutum L.):a comprehensive review
12
作者 MANIBHARATHI Sekar SOMASUNDARAM Selvaraj +3 位作者 PARASURAMAN Panneerselvam SUBRAMANIAN Alagesan RAVICHANDRAN Veerasamy MANIKANDA BOOPATHI Narayanan 《Journal of Cotton Research》 CAS 2024年第3期302-317,共16页
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere... Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems. 展开更多
关键词 Deficit irrigation High density planting system Ultra narrow row Cost saving mechanical harvesting Yield optimization
下载PDF
Large-ridge Mechanized Planting Technology of Potato in Hailar District of Hulunbeier City
13
作者 Lihua ZHANG Lin KANG 《Agricultural Biotechnology》 CAS 2019年第3期67-72,83,共7页
The mechanized large-ridge production technology of potato was summarized,including preparation before sowing,deep tillage and land preparation,deep application of chemical fertilizer,sowing,intertillage,disease and p... The mechanized large-ridge production technology of potato was summarized,including preparation before sowing,deep tillage and land preparation,deep application of chemical fertilizer,sowing,intertillage,disease and pest control,harvesting and other related contents.The comparative experimental study of large ridge and small ridge modes focused on the effects of ridge spacing on soil bulk density,temperature,water retention,crop growth and yield.The technology has the advantages of time saving,labor saving,seed saving,and fertilizer saving.It can significantly improve production efficiency,and is a high-yield and high-efficiency planting mode that increases potato yield.This model can increase yield by 370 kg/hm 2 and improve income by 160 yuan/hm 2.The results of this study have greatly promoted the promotion and application of mechanized largo-ridge potato planting technology. 展开更多
关键词 Hailar DISTRICT POTATO Large-ridge planting mechanIZATION planting technology Economic benefit
下载PDF
Osmoregulation Mechanism of Drought Stress and Genetic Engineering Strategies for Improving Drought Resistance in Plants
14
作者 DuJinyou ChenXiaoyang LiWei GaoQiong 《Forestry Studies in China》 CAS 2004年第2期56-62,共7页
Drought, one of the main adverse environmental factors, obviously affected plant growth and development. Many adaptive strategies have been developed in plants for coping with drought or water stress, among which osmo... Drought, one of the main adverse environmental factors, obviously affected plant growth and development. Many adaptive strategies have been developed in plants for coping with drought or water stress, among which osmoregulation is one of the important factors of plant drought tolerance. Many substances play important roles in plant osmoregulation for drought resistance, including proline, glycine betaine, Lea proteins and soluble sugars such as levan, trehalose, sucrose, etc. The osmoregulation mechanism and the genetic engineering of plant drought-tolerance are reviewed in this paper. 展开更多
关键词 plant drought tolerance osmoregulation mechanism trees genetic engineering
下载PDF
Plant Antifreeze Proteins and Their Expression Regulatory Mechanism
15
作者 LinYuan-zhen LinShan-zhi ZhangZhi-yi ZhangWei LiuWen-feng 《Forestry Studies in China》 CAS 2005年第1期46-52,共7页
Low temperature is one of the major limiting environmental factors which constitutes the growth, development, productivity and distribution of plants. Over the past several years, the proteins and genes associated wi... Low temperature is one of the major limiting environmental factors which constitutes the growth, development, productivity and distribution of plants. Over the past several years, the proteins and genes associated with freezing resistance of plants have been widely studied. The recent progress of domestic and foreign research on plant antifreeze proteins and the identifica- tion and characterization of plant antifreeze protein genes, especially on expression regulatory mechanism of plant antifreeze proteins are reviewed in this paper. Finally, some unsolved problems and the trend of research in physiological functions and gene expression regulatory mechanism of plant antifreeze proteins are discussed. 展开更多
关键词 plant antifreeze proteins thermal hysteresis activity freezing-resistant mechanism expression regulatory mecha- nism
下载PDF
Anti-Fertility Effects and Mechanism of the Plant Extract Shikonin on Mice
16
作者 Heping Fu Darhan Bao +4 位作者 Man Duhu Shuai Yuan An Xing Suwen Yang Xiaodong Wu 《Journal of Biosciences and Medicines》 2016年第8期30-39,共11页
Controlling fertility of rodent pests has become an effective means of controlling the population of grassland rodents in China. Recently, research has focused on how to select environmentally-friendly sterilants with... Controlling fertility of rodent pests has become an effective means of controlling the population of grassland rodents in China. Recently, research has focused on how to select environmentally-friendly sterilants without pollution effects, and to realize sustainable control of pest rodent populations. Sterilants from plant extracts have been mainly selected. In this study, mice were used as the experimental subjects for research on the anti-fertility effects of plant extracts of shikonin and the anti-fertility mechanism of shikonin extract was determined. The mice were divided into four groups, including one control group and three experimental groups. There were three applications of shikonin extract in different concentrations (5 mg&middot;kg<sup>-1</sup>, 20 mg&middot;kg<sup>-1</sup> and 50 mg&middot;kg<sup>-1</sup>). The mice gavage experiments indicated that a shikonin concentration of 50 mg&middot;kg<sup>-1</sup> had the expected anti-fertility effects. Mice copulation experiments showed that the 50 mg&middot;kg<sup>-1</sup> shikonin treatment had significant anti-fertility effects on both female-treatment and female-male-treatment groups. The results of the PCR analysis on the AgRP and ghrelin mRNA from female ovaries and male testicles indicated that shikonin could control mice reproduction by regulating the pituitary gonadal axis. Shikonin, as plant source sterile agent, would have more ideal effects for functioned both sexes sterility. 展开更多
关键词 Anti-Fertility mechanism plant Extract SHIKONIN MICE
下载PDF
Plant phenolic extracts for the quality protection of frying oil during deep frying:Sources,effects,and mechanisms
17
作者 Fa Wang Yixi Sun +4 位作者 Shanshan Li Jing Yan Wen Qin Ahmed S.M.Saleh Qing Zhang 《Grain & Oil Science and Technology》 CAS 2023年第3期148-161,共14页
Protection of frying oil from deterioration by adding plant phenolic extracts to guarantee the quality of fried foods becomes the primary approach to promote the sustainable development of deep frying.Therefore,source... Protection of frying oil from deterioration by adding plant phenolic extracts to guarantee the quality of fried foods becomes the primary approach to promote the sustainable development of deep frying.Therefore,sources,antioxidant effects,and mechanisms of plant phenolic extracts recently applied in the quality protection of frying oil as well as challenges for the actual use of these extracts are comprehensively reviewed in this study.Spices,herbs,berries,tea leaves,and fruit and vegetable wastes are common sources for preparing phenolic extracts showing comparative antioxidant capacity referring to the synthetic antioxidants.The general effect of using these natural antioxidants is the improvement of thermal stability to extend the shelf life of frying oil and thus the modification of edible quality of fried foods.Specifically,the increases in common quality attributes and amount of hazardous products and the oxidative reduction of unsaturated triacylglycerols without negatively influencing the sensory quality are inhibited when suitable plant extracts are applied.The incorporation of plant phenolic extracts other than synthetic counterparts in frying oil has been demonstrated as a potential method to improve the frying performance of oils.However,challenges for the scale application of plant phenolic extracts,such as the purity,thermal stability,and antioxidant timing,are still needed to be further investigated. 展开更多
关键词 Frying oil Phenolic antioxidants plant extract Physicochemical properties Antioxidant mechanisms
下载PDF
Response Mechanism of Plants to Drought Stress
18
作者 Pei GAO Yuhua MA 《Plant Diseases and Pests》 CAS 2023年第5期30-34,共5页
Drought stress is an important factor affecting plant growth and development.It will provide a theoretical basis for cultivating new stress-resistant varieties and improving water utilization rate of plants by studyin... Drought stress is an important factor affecting plant growth and development.It will provide a theoretical basis for cultivating new stress-resistant varieties and improving water utilization rate of plants by studying the regulation mechanism of osmotic adjustment and water transportation under drought stress,and understanding the physiological and biochemical characteristics and stress resistance mechanism. 展开更多
关键词 plant gene Drought stress Regulation mechanism Osmotic adjustment substance Water transportation
下载PDF
Study on the Tolerance Mechanism of Alkaline Soil-Tolerant Wild Plants
19
作者 S.K. Liu  X.X. Zhang  T. Takano 《分子植物育种》 CAS CSCD 2007年第2期192-192,共1页
The soil in many agricultural areas, including large parts of China, is becoming increasingly alkaline as a result of exploitation of soil resources. The soil becomes alkaline as a result of hydrolysis of two carbonat... The soil in many agricultural areas, including large parts of China, is becoming increasingly alkaline as a result of exploitation of soil resources. The soil becomes alkaline as a result of hydrolysis of two carbonates (NaH- 展开更多
关键词 碱性土壤 植物耐受 实验 种植
下载PDF
Impact of mechanical stimulation on the life cycle of horticultural plant 被引量:1
20
作者 Zhengguang Liu Tobi Fadiji +2 位作者 Jun Yang Zhiguo Li Fideline Tchuenbou-Magaia 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第3期381-394,共14页
Mechanical stimulation technology is critical in agricultural crop production because it is constantly regarded as a developing green technology to regulate plants to meet people's need for green and healthy agric... Mechanical stimulation technology is critical in agricultural crop production because it is constantly regarded as a developing green technology to regulate plants to meet people's need for green and healthy agricultural products. Various environmental mechanical stimulation impacts seed germination, seedling growth, flowering date, fruit quantity, and fruit quality throughout the life cycle of a horticultural plant. This study first outlines the basic characteristics of six types of common mechanical stimulation in nature:precipitation, wind, gravity,touch, sound, and vibration. The effects of various mechanical stimulation types on the seed, seedling, flowering, and fruit of horticultural plants throughout their whole life cycle are then presented, as reviewed in the recent 100 years of existing literature. Finally, potential future study directions are discussed. The main challenge in mechanical stimulation technology is to uncover its potential capabilities for regulating and controlling plant development and fruit quality in green agriculture instead of agricultural chemicals. 展开更多
关键词 mechanical stimulation plant SEED SEEDLING FLOWERING FRUIT
下载PDF
上一页 1 2 159 下一页 到第
使用帮助 返回顶部