Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restr...Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.展开更多
Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, w...Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios.展开更多
This article outlines an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment. It consists of investigated wireless transformer structures with various ferrite forms. WPT technolog...This article outlines an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment. It consists of investigated wireless transformer structures with various ferrite forms. WPT technology has rapidly advanced in the last few years. At kilowatt power levels, the transmission distance grows from a few millimeters to several hundred millimeters with a grid to load efficiency greater than 90%. The improvements have made the WPT more appealing for electric vehicle (EV) charging applications in both static and dynamic charging scenarios. Static and dynamic WEVCS, two of the main applications, are described, and current developments with features from research facilities, academic institutions, and businesses are noted. Additionally, forthcoming concepts based WEVCS are analyzed and examined, including “dynamic” wireless charging systems (WCS). A dynamic wireless power transfer (DWPT) system, which can supply electricity to moving EVs, is one of the feasible alternatives. The moving secondary coil is part of the dynamic WPT system, which also comprises of many fixed groundside (primary) coils. An equivalent circuit between the stationary system and the dynamic WPT system that results from the stationary system is demonstrated by theoretical investigations. The dynamic WPT system’s solenoid coils outperform circular coils in terms of flux distribution and misalignment. The WPT-related EV wireless charging technologies were examined in this study. WPT can assist EVs in overcoming their restrictions on cost, range, and charging time.展开更多
At present, electric vehicles are very common means of transportation in our life. Contact charging is the main method of electric vehicles in China. With the continuous improvement of people’s awareness of environme...At present, electric vehicles are very common means of transportation in our life. Contact charging is the main method of electric vehicles in China. With the continuous improvement of people’s awareness of environmental protection, wireless charging technology is also under constant development. Currently, there are more static wireless charging technologies, while dynamic charging mode is only a perfection and supplement to it, which is crucial to the promotion of electric vehicles and is able to make charging work faster and easier. China has been researching dynamic wireless charging technology, but it has been affected by many factors. Therefore, it is necessary for the relevant personnel to solve the existing obstacles according to the characteristics of dynamic wireless charging technology and apply dynamic wireless charging technology in an efficient manner.展开更多
As the technological breakthrough is made in wireless charging, the wireless rechargeable sensor networks (WRSNs) are finally proposed. In order to reduce the charging completion time, most existing works use the “mo...As the technological breakthrough is made in wireless charging, the wireless rechargeable sensor networks (WRSNs) are finally proposed. In order to reduce the charging completion time, most existing works use the “mobilethen- charge” model—the Wireless charging vehicles (WCV) moves to the charging spot first and then charges nodes nearby. These works often aim to reduce the node’s movement delay or charging delay. However, the charging opportunities during the movement are overlooked in this model because WCV can charge nodes when it goes from one spot to the next. In order to use the charging opportunities, a speed grading method is proposed under the circumstance of variable WCV speed, which transformed the problem of final charging delay into a traveling salesman problem with speed grading. The problem was further solved by linear programming method. The simulation experiments show that, compared with the existing charging methods, the proposed method has a significant improvement in charging delay.展开更多
Many theoretical derivation of the energy model requires extensive simulation in Internet of Things (IoT). Network Simulator 3 (ns-3) provides a simulation platform for various experimental studies including energy ha...Many theoretical derivation of the energy model requires extensive simulation in Internet of Things (IoT). Network Simulator 3 (ns-3) provides a simulation platform for various experimental studies including energy harvest.However, the function of charge schedule and wireless energy transfer model is not yet implemented. To address this problem, in this paper we propose an extension to ns-3 for simulating mobile charging with wireless energy transfer.First, we utilize a WET Harvest Class to harvest energy from the environment and a Charge Schedule Class for the mobile charger to choose the optimal node charging in the charging request queue in ns-3. Second, we use Charge Energy Model to judge what the mobile charger will do next when the energy of current node is higher or lower than energy threshold. Evaluation results show that our improvements are feasible and helpful with charge schedule and energy model in ns-3.展开更多
Efficient portable wearable sweat sensors allow the long-term monitoring of changes in the status of biomarkers in sweat,which can be useful in diagnosis,medication,and nutritional assessment.In this study,we designed...Efficient portable wearable sweat sensors allow the long-term monitoring of changes in the status of biomarkers in sweat,which can be useful in diagnosis,medication,and nutritional assessment.In this study,we designed and tested a wireless,battery-free,flexible,self-pumping sweat-sensing system that simultaneously tracks levodopa and vitamin C levels in human sweat and detects body temperature.The system includes a microfluidic chip with a self-driven pump and anti-reflux valve,a flexible wireless circuit board,and a purpose-designed smartphone app.The microfluidic chip is used for the efficient collection of sweat and the drainage of excess sweat.The dual electrochemical sensing electrodes in the chip are modified with functional materials and appropriate enzymatic reagents,achieving excellent selectivity and stability.The sensitivities of the levodopa sensor and the vitamin C sensor are 0.0073 and 0.0018μA·μM^(-1),respectively,and the detection correlation coefficients of both exceed 0.99.Both sensors have a wide linear detection range of 0–100 and 0–1000μM,respectively,and low detection limits of 0.28 and 17.9μM,respectively.The flexible wireless circuit board is equipped with the functions of wireless charging,electrical signal capture and processing,and wireless transmission.The data recorded from each sensor are displayed on a smartphone via a self-developed app.A series of experimental results confirmed the reliability of the sweat-sensing system in noninvasively monitoring important biomarkers in the human body and its potential utility in the comprehensive assessment of biological health.展开更多
As the adoption of Electric Vehicles(EVs)intensifies,two primary challenges emerge:limited range due to battery constraints and extended charging times.The traditional charging stations,particularly those near highway...As the adoption of Electric Vehicles(EVs)intensifies,two primary challenges emerge:limited range due to battery constraints and extended charging times.The traditional charging stations,particularly those near highways,exacerbate these issues with necessary detours,inconsistent service levels,and unpredictable waiting durations.The emerging technology of dynamic wireless charging lanes(DWCLs)may alleviate range anxiety and eliminate long charging stops;however,the driving speed on DWCL significantly affects charging efficiency and effective charging time.Meanwhile,the existing research has addressed load balancing optimization on Dynamic Wireless Charging(DWC)systems to a limited extent.To address this critical issue,this study introduces an innovative eco-driving speed control strategy,providing a novel solution to the multi-objective optimization problem of speed control on DWCL.We utilize mathematical programming methods and incorporate the longitudinal dynamics of vehicles to provide an accurate physical model of EVs.Three objective functions are formulated to tackle the challenges at hand:reducing travel time,increasing charging efficiency,and achieving load balancing on DWCL,which corresponds to four control strategies.The results of numerical tests indicate that a comprehensive control strategy,which considers all objectives,achieves a minor sacrifice in travel time reduction while significantly improving energy efficiency and load balancing.Furthermore,by defining the energy demand and speed range through an upper operation limit,a relatively superior speed control strategy can be selected.This work contributes to the discourse on DWCL integration into modern transportation systems,enhancing the EV driving experience on major roads.展开更多
In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured ...In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured results,relevant capacitive compensations of the transformer and models are suggested and discussed in order to best match the operating mode and aiming at simplifying as much as possible the control and the electronics of the charger.展开更多
This paper proposes a demonstration of the infrastructure concept of electric vehicles-friendly highways. EVs (electric vehicles) are gaining momentum as a bright prospect to replace conventional fuel-dependent ICE ...This paper proposes a demonstration of the infrastructure concept of electric vehicles-friendly highways. EVs (electric vehicles) are gaining momentum as a bright prospect to replace conventional fuel-dependent ICE (internal combustion engine) as demand of EVs increase year by year in every country. However, due to battery capacity limitation and charging stations availability, EVs are mainly used in urban areas for short-range commuters rather than long-range journeys. This has resulted in EV usage concentrated in town and business areas. It is clear that EV usage for long distance driving is still in minimal priority due to inadequate battery performances and charging infrastructures insufficiency. The proposed concept is to solve range anxiety issues by wirelessly charging in-motion vehicles, particularly at highways namely DCH (dynamic charging highway).展开更多
针对电动车辆无线电能传输(wireless power transfer,WPT)系统存在的半导体性能有限和定位困难的问题,提出了一种多对一高压无线充电自由定位系统。该系统采用逆变器串联输入的设计来适应高压应用场景,同时利用多绕组变压器实现逆变器...针对电动车辆无线电能传输(wireless power transfer,WPT)系统存在的半导体性能有限和定位困难的问题,提出了一种多对一高压无线充电自由定位系统。该系统采用逆变器串联输入的设计来适应高压应用场景,同时利用多绕组变压器实现逆变器的等效并联输出和向多路发射回路传输电能的功能,并采用了多对一的设计以扩大电动车的定位范围以实现无线充电的自由定位功能。为分析多绕组变压器的工作机理和研究多对一拓扑的能量传输特性,进行了等效电路分析和MATLAB仿真,并制作实验室原型样机进行了实验验证。基于实验和仿真结果,提出了一种基于多对一WPT拓扑的混合工作模式,可以有效地扩大电动车辆无线充电时的定位范围。研究和分析表明,文中所提出的拓扑结构可以有效地提高系统的输入电压以应用于高压场景,并能有效扩大电动车辆无线充电时的定位范围以实现自由定位。展开更多
基金This work was supported partly by the China Postdoctoral Science Foundation(2023M730201)the Fundamental Research Funds for the Central Universities(2023XKRC027)+1 种基金the Fundamental Research Funds for the 173 project under Grant 2020-JCJQ-ZD-043the project under Grant 22TQ0403ZT07001 and Wei Zhen Limited Liability Company.
文摘Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.
基金Hubei Provincial Natural Science Foundation of China under Grant No.2017CKB893Wuhan Polytechnic University Reform Subsidy Project Grant No.03220153.
文摘Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios.
文摘This article outlines an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment. It consists of investigated wireless transformer structures with various ferrite forms. WPT technology has rapidly advanced in the last few years. At kilowatt power levels, the transmission distance grows from a few millimeters to several hundred millimeters with a grid to load efficiency greater than 90%. The improvements have made the WPT more appealing for electric vehicle (EV) charging applications in both static and dynamic charging scenarios. Static and dynamic WEVCS, two of the main applications, are described, and current developments with features from research facilities, academic institutions, and businesses are noted. Additionally, forthcoming concepts based WEVCS are analyzed and examined, including “dynamic” wireless charging systems (WCS). A dynamic wireless power transfer (DWPT) system, which can supply electricity to moving EVs, is one of the feasible alternatives. The moving secondary coil is part of the dynamic WPT system, which also comprises of many fixed groundside (primary) coils. An equivalent circuit between the stationary system and the dynamic WPT system that results from the stationary system is demonstrated by theoretical investigations. The dynamic WPT system’s solenoid coils outperform circular coils in terms of flux distribution and misalignment. The WPT-related EV wireless charging technologies were examined in this study. WPT can assist EVs in overcoming their restrictions on cost, range, and charging time.
文摘At present, electric vehicles are very common means of transportation in our life. Contact charging is the main method of electric vehicles in China. With the continuous improvement of people’s awareness of environmental protection, wireless charging technology is also under constant development. Currently, there are more static wireless charging technologies, while dynamic charging mode is only a perfection and supplement to it, which is crucial to the promotion of electric vehicles and is able to make charging work faster and easier. China has been researching dynamic wireless charging technology, but it has been affected by many factors. Therefore, it is necessary for the relevant personnel to solve the existing obstacles according to the characteristics of dynamic wireless charging technology and apply dynamic wireless charging technology in an efficient manner.
文摘As the technological breakthrough is made in wireless charging, the wireless rechargeable sensor networks (WRSNs) are finally proposed. In order to reduce the charging completion time, most existing works use the “mobilethen- charge” model—the Wireless charging vehicles (WCV) moves to the charging spot first and then charges nodes nearby. These works often aim to reduce the node’s movement delay or charging delay. However, the charging opportunities during the movement are overlooked in this model because WCV can charge nodes when it goes from one spot to the next. In order to use the charging opportunities, a speed grading method is proposed under the circumstance of variable WCV speed, which transformed the problem of final charging delay into a traveling salesman problem with speed grading. The problem was further solved by linear programming method. The simulation experiments show that, compared with the existing charging methods, the proposed method has a significant improvement in charging delay.
文摘Many theoretical derivation of the energy model requires extensive simulation in Internet of Things (IoT). Network Simulator 3 (ns-3) provides a simulation platform for various experimental studies including energy harvest.However, the function of charge schedule and wireless energy transfer model is not yet implemented. To address this problem, in this paper we propose an extension to ns-3 for simulating mobile charging with wireless energy transfer.First, we utilize a WET Harvest Class to harvest energy from the environment and a Charge Schedule Class for the mobile charger to choose the optimal node charging in the charging request queue in ns-3. Second, we use Charge Energy Model to judge what the mobile charger will do next when the energy of current node is higher or lower than energy threshold. Evaluation results show that our improvements are feasible and helpful with charge schedule and energy model in ns-3.
基金supported by the National Natural Science Foundation of China(No.32171373)the Projects of International Cooperation and Exchanges NSFC(No.82020108017)+1 种基金the Natural Science Foundation of Shanghai(No.23ZR1414500)the Medical Engineering Cross Project of SJTU(No.YG2021QN141).
文摘Efficient portable wearable sweat sensors allow the long-term monitoring of changes in the status of biomarkers in sweat,which can be useful in diagnosis,medication,and nutritional assessment.In this study,we designed and tested a wireless,battery-free,flexible,self-pumping sweat-sensing system that simultaneously tracks levodopa and vitamin C levels in human sweat and detects body temperature.The system includes a microfluidic chip with a self-driven pump and anti-reflux valve,a flexible wireless circuit board,and a purpose-designed smartphone app.The microfluidic chip is used for the efficient collection of sweat and the drainage of excess sweat.The dual electrochemical sensing electrodes in the chip are modified with functional materials and appropriate enzymatic reagents,achieving excellent selectivity and stability.The sensitivities of the levodopa sensor and the vitamin C sensor are 0.0073 and 0.0018μA·μM^(-1),respectively,and the detection correlation coefficients of both exceed 0.99.Both sensors have a wide linear detection range of 0–100 and 0–1000μM,respectively,and low detection limits of 0.28 and 17.9μM,respectively.The flexible wireless circuit board is equipped with the functions of wireless charging,electrical signal capture and processing,and wireless transmission.The data recorded from each sensor are displayed on a smartphone via a self-developed app.A series of experimental results confirmed the reliability of the sweat-sensing system in noninvasively monitoring important biomarkers in the human body and its potential utility in the comprehensive assessment of biological health.
基金funded by the National Natural Science Foundation of China(72201149)Xinjiang Key Laboratory of Green Mining of Coal resources,Ministry of Education(KLXGY-KB2420)Guangzhou Basic and Applied Basic Research(SL2023A04J00802).
文摘As the adoption of Electric Vehicles(EVs)intensifies,two primary challenges emerge:limited range due to battery constraints and extended charging times.The traditional charging stations,particularly those near highways,exacerbate these issues with necessary detours,inconsistent service levels,and unpredictable waiting durations.The emerging technology of dynamic wireless charging lanes(DWCLs)may alleviate range anxiety and eliminate long charging stops;however,the driving speed on DWCL significantly affects charging efficiency and effective charging time.Meanwhile,the existing research has addressed load balancing optimization on Dynamic Wireless Charging(DWC)systems to a limited extent.To address this critical issue,this study introduces an innovative eco-driving speed control strategy,providing a novel solution to the multi-objective optimization problem of speed control on DWCL.We utilize mathematical programming methods and incorporate the longitudinal dynamics of vehicles to provide an accurate physical model of EVs.Three objective functions are formulated to tackle the challenges at hand:reducing travel time,increasing charging efficiency,and achieving load balancing on DWCL,which corresponds to four control strategies.The results of numerical tests indicate that a comprehensive control strategy,which considers all objectives,achieves a minor sacrifice in travel time reduction while significantly improving energy efficiency and load balancing.Furthermore,by defining the energy demand and speed range through an upper operation limit,a relatively superior speed control strategy can be selected.This work contributes to the discourse on DWCL integration into modern transportation systems,enhancing the EV driving experience on major roads.
文摘In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured results,relevant capacitive compensations of the transformer and models are suggested and discussed in order to best match the operating mode and aiming at simplifying as much as possible the control and the electronics of the charger.
文摘This paper proposes a demonstration of the infrastructure concept of electric vehicles-friendly highways. EVs (electric vehicles) are gaining momentum as a bright prospect to replace conventional fuel-dependent ICE (internal combustion engine) as demand of EVs increase year by year in every country. However, due to battery capacity limitation and charging stations availability, EVs are mainly used in urban areas for short-range commuters rather than long-range journeys. This has resulted in EV usage concentrated in town and business areas. It is clear that EV usage for long distance driving is still in minimal priority due to inadequate battery performances and charging infrastructures insufficiency. The proposed concept is to solve range anxiety issues by wirelessly charging in-motion vehicles, particularly at highways namely DCH (dynamic charging highway).
文摘针对电动车辆无线电能传输(wireless power transfer,WPT)系统存在的半导体性能有限和定位困难的问题,提出了一种多对一高压无线充电自由定位系统。该系统采用逆变器串联输入的设计来适应高压应用场景,同时利用多绕组变压器实现逆变器的等效并联输出和向多路发射回路传输电能的功能,并采用了多对一的设计以扩大电动车的定位范围以实现无线充电的自由定位功能。为分析多绕组变压器的工作机理和研究多对一拓扑的能量传输特性,进行了等效电路分析和MATLAB仿真,并制作实验室原型样机进行了实验验证。基于实验和仿真结果,提出了一种基于多对一WPT拓扑的混合工作模式,可以有效地扩大电动车辆无线充电时的定位范围。研究和分析表明,文中所提出的拓扑结构可以有效地提高系统的输入电压以应用于高压场景,并能有效扩大电动车辆无线充电时的定位范围以实现自由定位。