期刊文献+
共找到1,596篇文章
< 1 2 80 >
每页显示 20 50 100
Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm
1
作者 Heng Zhang Chao Su +2 位作者 Zhizhong Song Zhenzhong Shen Huiguang Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期813-826,共14页
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for... Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development. 展开更多
关键词 Fourier equation cooling water pipe mass concrete iteration algorithm
下载PDF
A p-version embedded model for simulation of concrete temperature fields with cooling pipes 被引量:5
2
作者 Sheng Qiang Zhi-qiang Xie Rui Zhong 《Water Science and Engineering》 EI CAS CSCD 2015年第3期248-256,共9页
Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperatu... Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model. 展开更多
关键词 Concrete temperature field cooling pipe Embedded model P-VERSION Numerical simulation
下载PDF
Experimental Investigation of Solar Panel Cooling by a Novel Micro Heat Pipe Array 被引量:4
3
作者 Xiao Tang Zhenhua Quan Yaohua Zhao 《Energy and Power Engineering》 2010年第3期171-174,共4页
A novel micro heat pipe array was used in solar panel cooling. Both of air-cooling and water-cooling conditions under nature convection condition were investigated in this paper. Compared with the ordinary solar panel... A novel micro heat pipe array was used in solar panel cooling. Both of air-cooling and water-cooling conditions under nature convection condition were investigated in this paper. Compared with the ordinary solar panel, the maximum difference of the photoelectric conversion efficiency is 2.6%, the temperature reduces maximally by 4.7℃, the output power increases maximally by 8.4% for the solar panel with heat pipe using air-cooling, when the daily radiation value is 26.3 MJ. Compared with the solar panel with heat pipe using air-cooling, the maximum difference of the photoelectric conversion efficiency is 3%, the temperature reduces maximally by 8℃, the output power increases maximally by 13.9% for the solar panel with heat pipe using water-cooling, when the daily radiation value is 21.9 MJ. 展开更多
关键词 Solar PANEL cooling PHOTOELECTRIC CONVERSION Efficiency Micro Heat pipe ARRAY
下载PDF
Drive Train Cooling Options for Electric Vehicles
4
作者 Randeep Singh Tomoki Oridate Tien Nguyen 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期703-717,共15页
Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches ba... Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches based on heat pipes have been considered for the thermal management of electric vehicle(EV)traction systems including battery,inverter,and motor.For the battery,a heat pipe base plate is used to provide high heat removal(180 W per module)and better thermal uniformity(<5°C)for the battery modules in a pack while downsizing the liquid cold plate system.In the case of Inverter,two phase cooling system based on heat pipes was designed to handle hot spots arising from high heat flux(∼100 W/cm2)–for liquid cooling and provide location independence and a dedicated cooling approach-for air cooling.For EV motors,heat pipebased systems are explored for stator and rotor cooling.The paper also provides a glimpse of development on high-performance microchannel-based cold plate technologies based on parallel fins and multi-layer 3D stacked structures.Specifically,this work extends the concept of hybridization of two-phase technology based on heat pipes with single-phase technology,predominately based on liquid cooling,to extend performance,functionalities,and operational regime of cooling solutions for components of EV drive trains.In summary,heat pipes will help to improve and extend the overall reliability,performance,and safety of air and liquid cooling systems in electric vehicles. 展开更多
关键词 Li-ion battery INVERTER motor electric vehicle heat pipe two-phase cooling high performance cold plate
下载PDF
Thermal field in water pipe cooling concrete hydrostructures simulated with singular boundary method
5
作者 Yong-xing Hong Wen Chen +2 位作者 Ji Lin Jian Gong Hong-da Cheng 《Water Science and Engineering》 EI CAS CSCD 2017年第2期107-114,共8页
The embedded water pipe system is often used as a standard cooling technique during the construction of large-scale mass concrete hydrostructures. The prediction of the temperature distribution considering the cooling... The embedded water pipe system is often used as a standard cooling technique during the construction of large-scale mass concrete hydrostructures. The prediction of the temperature distribution considering the cooling effects of embedded pipes plays an essential role in the design of the structure and its cooling system. In this study, the singular boundary method, a semi-analytical meshless technique, was employed to analyze the temperature distribution. A numerical algorithm solved the transient temperature field with consideration of the effects of cooling pipe specification, isolation of heat of hydration, and ambient temperature. Numerical results are verified through comparison with those of the finite element method, demonstrating that the proposed approach is accurate in the simulation of the thermal field in concrete structures with a water cooling pipe. 展开更多
关键词 Thermal field SINGULAR boundary METHOD SEMI-ANALYTICAL METHOD Water cooling pipe CONCRETE hydrostructure
下载PDF
Testing Thermal Properties of Cooling Device with Heat Pipes to Improve His Heat Transfer Ability
6
作者 Patrik Nemec Alexander Caja Milan Malcho 《Journal of Energy and Power Engineering》 2014年第2期209-216,共8页
This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing o... This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing of cooling device is monitoring temperature on the aluminium block of energy converter, heat pipes and ribs under temperature condition 30 ℃ in thermostatic chamber. Testing of the device was performed at tilt angles positions 0, 10 and 20° from the vertical level. The heat flux loaded to energy converter was 450 W. The next goal of the paper is to research on influence working position of the wick heat pipe on their thermal performance. In this research heat pipes were made with capillary structure sintered from copper powder granularity 100, 63 and 50 μm filled with water and ethanol. Next heat pipe thermal performance was performed by measuring heat source and working positions. Knowledge of these two research goals can bring potential improvements in purpose of cooling device for effective heat sink from high power electronic components. 展开更多
关键词 Heat pipe heat transfer cooling device.
下载PDF
Decoupled thermal–hydraulic analysis of an air-cooled separated heat pipe for spent fuel pools under natural convection 被引量:1
7
作者 Hui-Lin Xue Jian-Jie Cheng +3 位作者 Wei-Hao Ji Wen-Jin Li Han-Zhong Tao Wei Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第6期183-197,共15页
An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal ... An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal and mass balance,this study decoupled the heat transfer processes in the SFS.In accordance with the decoupling conditions,we modeled the spent fuel pool of the CAP1400 pressurized water reactor in Weihai and used computational fluid dynamics to explore the heat dissipation capacity of the SFS under different air temperatures and wind speeds.The results show that the air-cooled separated heat pipe radiator achieved optimal performance at an air temperature of 10℃ or wind speed of 8 m/s.Fitted equations for the equivalent thermal conductivity of the separated heat pipes with the wind speed and air temperature we obtained according to the thermal resistance network model.This study is instructive for the actual operation of an SFS. 展开更多
关键词 Decoupled analysis Separated heat pipe CAP1400 Finned tube radiator Passive cooling
下载PDF
Energy Saving Model and Calculation Example of Three Cooling Schemes for Data Center in Hot Summer and Cold Winter Area
8
作者 Feihu Chen Xinli Zhou Shuguang Liao 《Journal of Power and Energy Engineering》 2021年第12期1-20,共20页
In order to achieve the goal of “carbon peak” in 2030 and “carbon neutralization” in 2060, the task of energy conservation has risen to the national strategic level, and its work is urgent. It focuses on energy sa... In order to achieve the goal of “carbon peak” in 2030 and “carbon neutralization” in 2060, the task of energy conservation has risen to the national strategic level, and its work is urgent. It focuses on energy saving and energy consumption in data center, 5G network and other fields. The gravity heat pipe double cycle air conditioning is a kind of room air conditioning which uses natural cooling source with high efficiency. According to the outdoor meteorological parameters of ten typical cities in China, the calculation model of unit hybrid refrigeration mode is established by using integral method. A simplified algorithm for statistical summation is proposed. Then it compares with the same type of refrigerant pump air conditioner, water-cooled chiller and natural cooling plate. The results show that the annual operation time of gravity heat pipe double cycle air conditioner is 50.8% longer than that of refrigerant pump air conditioner. Then the calculation model is verified by the annual actual operation data of a data center in Changsha. The results show that the double cycle air conditioner with gravity heat pipe can save about 34% energy compared with the chiller. The accuracy of the calculation model is 17.5%, which meets the engineering accuracy requirements. The application of gravity heat pipe double cycle air conditioning in hot summer and cold winter area is a scheme worthy of popularization and application. 展开更多
关键词 Gravity Heat pipe Double Cycle Refrigerant Pump Natural cooling Inte-gral Method Simplified Algorithm for Statistical Summation Energy Sav-ing Rate
下载PDF
Cooling Device Using the Natural Convection, Phase Change of Substance and Capillary Effect
9
作者 Patrik Neme~ AlexanderCaja Milan Malcho 《Journal of Energy and Power Engineering》 2013年第8期1520-1526,共7页
Paper deals about testing of device with gravity assisted heat pipes and about researching of wick heat pipes used to effective heat transfers from power switches of energy converter. At first, to simulate ambient con... Paper deals about testing of device with gravity assisted heat pipes and about researching of wick heat pipes used to effective heat transfers from power switches of energy converter. At first, to simulate ambient condition was designed thermostatic chamber where was monitoring temperature course on main parts of cooling device (energy converter, air cooler and heat pipes) at various position of cooling device. It was found, if the cooling device is in tilt position the cooling performance is better. But if the tilt angel of gravity assisted heat pipe is higher the heat transfer is lower. From reason improve heat transfer cooling device at tilt angle are manufactured heat pipes with the sintered, mesh screen and grooved capillary structures and tested their thermal performance at vertical and tilt angel 45~ position by calorimetric method. Article describes manufacturing process and thermal performance measuring method of wick heat pipes. This experiment testify that the wick heat pipe is able operate at tilt angle position than gravity assisted heat pipe and application of wick heat pipes into cooling device will improve his cooling performance. 展开更多
关键词 Heat pipe heat transfer cooling device natural convection phase change capillary effect.
下载PDF
Effects of bending on heat transfer performance of axial micro-grooved heat pipe 被引量:5
10
作者 蒋乐伦 汤勇 潘敏强 《Journal of Central South University》 SCIE EI CAS 2011年第2期580-586,共7页
Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved... Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations. 展开更多
关键词 electronics cooling system axial micro-grooved heat pipe BENDING heat transfer performance
下载PDF
Fabrication and thermal performance of grooved-sintered wick heat pipe 被引量:3
11
作者 蒋乐伦 汤勇 +2 位作者 武汇岳 周伟 蒋琳珍 《Journal of Central South University》 SCIE EI CAS 2014年第2期668-676,共9页
Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming an... Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming and solid state sintering.The wick could be divided into two parts for liquid capillary pumping flow:groove sintered zone and uniform sintered zone.Both of the thermal resistance network model and the maximum heat transfer capability model of GSHP were built.Compared with the theoretical values,the heat transfer limit and thermal resistance of GSHP were measured from three aspects:copper powder size,wick thickness and number of micro grooves.The results show that the wick thickness has the greatest effect on the thermal resistance of GSHP while the copper powder size has the most important influence on the heat transfer limit.Given certain copper powder size and wick thickness,the thermal resistance of GSHP can be the lowest when micro-groove number is about 55. 展开更多
关键词 WICK heat pipe electronics cooling thermal resistance heat transfer limit
下载PDF
Formation of X-120 M Line Pipe through J-C-O-E Technique 被引量:3
12
作者 Jai Dev Chandel Nand Lal Singh 《Engineering(科研)》 2011年第4期400-410,共11页
The line pipe forming operation can be divided into two parts, first is to achieve the required shape in terms of curvature and ovality after formation of the line pipe. The curvature and ovality ultimately effects th... The line pipe forming operation can be divided into two parts, first is to achieve the required shape in terms of curvature and ovality after formation of the line pipe. The curvature and ovality ultimately effects the final dimensional controls at the later stage i.e. after mechanical expansion of the line pipe. The second part is to make right welding joint geometry to make the final long seam weld of line pipe. The welding joint geometry ultimately controls soundness of final seam weld at later stage i.e. during submerged arc welding of the line pipe. As far as curvature or shape of line pipe is concerned, important operation is making the required curvature along the edges of TMCP and ACC (Thermo mechanical controlled processing and accelerated cooling process) plate for line pipe (Plate Edge Crimping press) up to the 150 mm in width minimum and forming of the line pipe at J-C-O press. The selection of dies with proper hardness and curvature in both the operation plays a vital role in the formation of line pipes. The main parameters of selection dies (Tools) are size of line pipe for which dies/tools are to be made i.e. the diameter of line pipe, thickness of line pipe and most important is grade of line pipe (Strength level). The grade or strength level decides amount of spring back behavior of the steel Plate. The spring back behavior again varies from steel mill to steel mill in the same grade of HR plate. This is because the each steel mill has its own manufacturing procedures to produce the TMCP and ACC plate. The plate for line pipe is produced through TMCP (Thermo mechanical controlled processing) and accelerated cooling process. In this process the strength level is achieved by the chemical composition of the slab, thickness of the slab, reheating temperature, roughing temperature at which reduction in the thickness, finish rolling temperature and finally the accelerated cooling temperature rate. 展开更多
关键词 LINE pipe J-C-O-E LINE pipe Manufacturing Spring Back TMCP and Accelerated cooling Slab Preheating Rough ROLLING Finish ROLLING
下载PDF
锅炉水冷壁管失效分析 被引量:1
13
作者 郭海霞 张欣耀 袁晓冬 《热处理》 CAS 2024年第2期55-57,60,共4页
锅炉水冷壁管材料为20G钢,在320℃和10.3 MPa下使用约5年后外表面出现鼓包并泄漏。对失效的水冷壁管进行了宏观检查、化学成分分析、力学性能检测、金相检验、腐蚀产物分析及锅炉水质检测。结果表明:水冷壁管失效是由于锅炉水碱性超标... 锅炉水冷壁管材料为20G钢,在320℃和10.3 MPa下使用约5年后外表面出现鼓包并泄漏。对失效的水冷壁管进行了宏观检查、化学成分分析、力学性能检测、金相检验、腐蚀产物分析及锅炉水质检测。结果表明:水冷壁管失效是由于锅炉水碱性超标从而发生高温碱腐蚀所致。 展开更多
关键词 水冷壁管 高温碱腐蚀 泄漏
下载PDF
热管冷却反应堆系统研究进展和挑战
14
作者 田文喜 王成龙 +2 位作者 郭凯伦 秋穗正 苏光辉 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第S02期340-354,共15页
热管是一种高效的非能动热量传递元件,热管冷却反应堆核动力系统在多场景特种应用领域具备独特优势。本文概述了热管冷却反应堆特种核动力系统发展情况。首先介绍了热管冷却反应堆概念提出以及在海陆空天等领域的应用场景分析,同时总结... 热管是一种高效的非能动热量传递元件,热管冷却反应堆核动力系统在多场景特种应用领域具备独特优势。本文概述了热管冷却反应堆特种核动力系统发展情况。首先介绍了热管冷却反应堆概念提出以及在海陆空天等领域的应用场景分析,同时总结了国内外典型堆型的发展现状。其次探讨了当前热管冷却反应堆面临的关键技术挑战,包括高性能材料研究、高性能热管研制、高效能量转换技术研究、设计分析技术研究。最后对未来发展趋势进行了分析和展望,强调了整体系统一体化研制、发电器件特性研究以及智能自主控制技术在热管冷却反应堆领域的重要性。本文的系统性总结将推动热管冷却反应堆技术的进一步发展,为未来特种核动力系统的应用提供重要支持。 展开更多
关键词 热管 热管冷却反应堆 特种核动力系统 关键技术挑战
下载PDF
热管堆单根热管失效事故瞬态数值分析研究
15
作者 韩冶 杨思远 +2 位作者 文青龙 柴宝华 张亚坤 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第9期1920-1929,共10页
热管冷却反应堆(热管堆)如果发生单根热管失效事故,可能会超过热管最大允许温度和功率并出现级联失效。本文以热管堆堆芯为研究对象,通过建立单根热管失效事故瞬态计算模型,利用ANSYS Mechanical APDL程序对不同工况单根热管失效事故进... 热管冷却反应堆(热管堆)如果发生单根热管失效事故,可能会超过热管最大允许温度和功率并出现级联失效。本文以热管堆堆芯为研究对象,通过建立单根热管失效事故瞬态计算模型,利用ANSYS Mechanical APDL程序对不同工况单根热管失效事故进行了瞬态数值分析研究。结果表明:最恶劣工况是处于靠近外围热管失效的工况,基体最高温度为1314.16 K,芯块中心最高温度达到1352.49 K,热管最高工作温度为1149.84 K,均未超出容许工作温度限值,约123 s达到新的稳态;在最恶劣工况下,靠近中心的热管最高功率为83709.87 W,未超出热管传热极限范围,并能顺利达成新的稳态进行工作,不会有整体级联失效的风险。本文结果可为该堆型的设计提供热管失效事故的参考,并为堆芯结构设计奠定基础。 展开更多
关键词 热管冷却反应堆 热管失效 级联失效 瞬态数值分析
下载PDF
电机散热中毛细芯热管等效导热系数演变规律实验研究
16
作者 李雪强 赵萧涵 +3 位作者 张钟垚 刘圣春 张成明 李佳欣 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第5期847-853,共7页
为推动毛细芯热管在电机中的应用并提供理论参考和数据支撑,本文通过实验研究了加热功率、运行角度以及风速对毛细芯热管等效导热系数的影响。结果表明,热管正常运行过程中,加热功率对热管等效导热系数影响不大。不同运行角度下的热管... 为推动毛细芯热管在电机中的应用并提供理论参考和数据支撑,本文通过实验研究了加热功率、运行角度以及风速对毛细芯热管等效导热系数的影响。结果表明,热管正常运行过程中,加热功率对热管等效导热系数影响不大。不同运行角度下的热管等效导热系数也存在一定的差异,在10 W加热功率下,等效导热系数的差异最高可达25%。当风速增大时,热管的等效导热系数呈现出减小的趋势,这种现象对高加热功率下的热管运行尤为明显。 展开更多
关键词 电机冷却 毛细芯热管 等效导热系数 温差 风速
下载PDF
食用油罐内冷媒管降温模拟试验与优化
17
作者 陈雁 杨龙基 +3 位作者 韩志强 张峰 许启铿 王晓东 《粮食与油脂》 北大核心 2024年第10期71-76,共6页
为缓解食用油在储藏过程中出现的热分层现象,设计内置冷媒管的食用油储罐,并通过调整冷媒流动方式、冷媒流量和冷媒温度等对储油进行降温对比试验。结果表明:采用上供式和下供式降温均可在储油温度整体下降的同时有效缩小上下层温差(1.9... 为缓解食用油在储藏过程中出现的热分层现象,设计内置冷媒管的食用油储罐,并通过调整冷媒流动方式、冷媒流量和冷媒温度等对储油进行降温对比试验。结果表明:采用上供式和下供式降温均可在储油温度整体下降的同时有效缩小上下层温差(1.93、3.67℃),且与自然降温(6.79℃)相比,热分层现象得到明显改善。采用下供式降温的效率最高,较上供式提高了约20%,且下层油温较上供式低约1.9℃。基于Ansys(Fluent)商用计算流体动力学软件平台,通过数值模拟进一步研究了采用下供式的冷媒流量对下层油温的影响。结果显示下供式降温可有效阻隔外部传热,而下层温度变化集中在低温区域,对远离入口侧区域的影响并不明显。 展开更多
关键词 食用油储存 热分层 内置冷媒管 降温 计算机流体力学
下载PDF
温差热电转换型空间热管冷却反应堆瞬态分析程序开发及验证 被引量:1
18
作者 葛攀和 李敏 +2 位作者 李杨柳 胡古 柯国土 《原子能科学技术》 EI CSCD 北大核心 2024年第1期69-83,共15页
热管冷却反应堆采用固态堆芯设计、高温热管传热,具有结构简单、非能动、高可靠性等优点。为研究温差热电转换型空间热管冷却反应堆电源系统的瞬态特性,本文针对该型电源系统中最主要的系统(包括堆本体、高温热管、温差热电转换系统)建... 热管冷却反应堆采用固态堆芯设计、高温热管传热,具有结构简单、非能动、高可靠性等优点。为研究温差热电转换型空间热管冷却反应堆电源系统的瞬态特性,本文针对该型电源系统中最主要的系统(包括堆本体、高温热管、温差热电转换系统)建立了详细的数学物理模型,并开发了系统瞬态分析程序,其中堆本体模型基于OpenFOAM进行模块开发,耦合了点堆动力学模型和反应性反馈模型。通过文献和试验数据分别验证了高温热管及温差热电转换模型,结果与参考值符合较好,其中温差热电转换模块发电功率与试验值的相对偏差小于2.75%。采用该程序对KRUSTY进行了建模分析,开展了反应性引入、热电转换模块失效、负荷跟踪、主动冷却丧失工况下的瞬态分析,并与试验值进行了对比。结果表明,在上述瞬态工况下堆芯燃料表面温度与试验值的偏差小于4.1 K,程序计算结果与试验值符合较好。 展开更多
关键词 热管冷却反应堆 瞬态分析 高温热管 温差热电转换 KRUSTY试验
下载PDF
计及电磁-传热影响的蒸发冷却风力发电机定子铁心穿管结构优化设计 被引量:1
19
作者 程自然 王宇 +2 位作者 高剑 黄守道 阮琳 《电工技术学报》 EI CSCD 北大核心 2024年第6期1684-1697,共14页
采用自循环式蒸发冷却技术是提升大容量风力发电机组散热能力和可靠性的一种经济且有效的方式,然而在传统电机的分析设计和性能预测过程中,往往会忽略定子局部穿管结构的改变对电机电磁性能的影响,同时也会忽略这部分接触热阻在热传导... 采用自循环式蒸发冷却技术是提升大容量风力发电机组散热能力和可靠性的一种经济且有效的方式,然而在传统电机的分析设计和性能预测过程中,往往会忽略定子局部穿管结构的改变对电机电磁性能的影响,同时也会忽略这部分接触热阻在热传导过程中对电机冷却性能的影响。对此,该文首先基于风力发电机的运行特性和单元灵敏度方法分析了定子铁心穿管结构对电机电磁及冷却性能的影响,然后通过小倾角自循环管道换热实验以及接触热阻温升实验对空心圆铜管的换热能力以及接触热阻进行了分析和测试,最后建立了以电磁及传热性能为优化目标的铁心穿管结构优化策略,并以一台10 MW永磁直驱式风力发电机为研究对象,对定子铁心穿管结构开展了优化设计研究。通过优化方案的有限元分析验证说明,提出的优化策略可以准确且有效地满足电机电磁和冷却性能的设计要求,同时从电磁和散热两个维度来评估,所提出的优化策略同样适用于相同应用场景下的其他永磁同步电机。 展开更多
关键词 蒸发冷却风力发电机 定子铁心穿管冷却 电磁及冷却特性 接触热阻 单元灵敏度分析 优化设计
下载PDF
一种简化的高温热管启动模型 被引量:1
20
作者 王政 苟军利 +1 位作者 徐世浩 单建强 《原子能科学技术》 EI CSCD 北大核心 2024年第1期84-92,共9页
热管堆具有体积小、结构紧凑、功率密度高和固有安全性好等优点,被认为是深空和深海任务中最有前途的候选之一。为了研究其启动特性,建立兼顾计算精度及求解效率的热管启动模型至关重要。本文在充分考虑吸液芯区工质的熔化及气液界面处... 热管堆具有体积小、结构紧凑、功率密度高和固有安全性好等优点,被认为是深空和深海任务中最有前途的候选之一。为了研究其启动特性,建立兼顾计算精度及求解效率的热管启动模型至关重要。本文在充分考虑吸液芯区工质的熔化及气液界面处的蒸发和冷凝现象的基础上,建立了基于二维导热的热管壁和吸液芯区热阻网络模型。对于蒸汽区,基于尘气模型(DGM),研究分析了两种不同模拟方式的求解精度和计算效率。通过对不同碱金属热管实验的模拟,验证了模型的准确性。结果表明,模型能较好地模拟高温热管的启动特性,简化的等效热阻模型具有更高的计算效率,其更适合于热管堆系统的启动特性模拟。 展开更多
关键词 热管堆 启动特性 高温热管 等效热阻模型
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部