Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond...Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.展开更多
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process...Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.展开更多
This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of m...This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design.The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads.The topology optimization formula is combined with the ordered solid isotropic material with penalization(ordered-SIMP)multi-material interpolation model.The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function.Furthermore,the sequential optimization and reliability assessment(SORA)is applied to transform the original uncertainty optimization problem into an equivalent deterministic topology optimization(DTO)problem.Stochastic response surface and sparse grid technique are combined with SORA to get accurate information on the most probable failure point(MPP).In each cycle,the equivalent topology optimization formula is updated according to the MPP information obtained in the previous cycle.The adjoint variable method is used for deriving the sensitivity of the stress constraint and the moving asymptote method(MMA)is used to update design variables.Finally,the validity and feasibility of the method are verified by the numerical example of L-shape beam design,T-shape structure design,steering knuckle,and 3D T-shaped beam.展开更多
In recent years,there has been significant research on the application of deep learning(DL)in topology optimization(TO)to accelerate structural design.However,these methods have primarily focused on solving binary TO ...In recent years,there has been significant research on the application of deep learning(DL)in topology optimization(TO)to accelerate structural design.However,these methods have primarily focused on solving binary TO problems,and effective solutions for multi-material topology optimization(MMTO)which requires a lot of computing resources are still lacking.Therefore,this paper proposes the framework of multiphase topology optimization using deep learning to accelerate MMTO design.The framework employs convolutional neural network(CNN)to construct a surrogate model for solving MMTO,and the obtained surrogate model can rapidly generate multi-material structure topologies in negligible time without any iterations.The performance evaluation results show that the proposed method not only outputs multi-material topologies with clear material boundary but also reduces the calculation cost with high prediction accuracy.Additionally,in order to find a more reasonable modeling method for MMTO,this paper studies the characteristics of surrogate modeling as regression task and classification task.Through the training of 297 models,our findings show that the regression task yields slightly better results than the classification task in most cases.Furthermore,The results indicate that the prediction accuracy is primarily influenced by factors such as the TO problem,material category,and data scale.Conversely,factors such as the domain size and the material property have minimal impact on the accuracy.展开更多
We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projec...We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.展开更多
As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this r...As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.展开更多
For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quanti...For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.展开更多
A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method ha...A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method has been established in early literature. However, its practical applications and significance in advancing the analysis of AC machines need further elaboration. This paper aims to complement VAM by augmenting its theory, offering additional insights into its conclusions, as well as demonstrating its utility in assessing armature windings and its application of calculating torque for permanent magnet synchronous machines(PMSM). This work contributes to advancing the analysis of AC machines and underscores the potential for improved design and performance optimization.展开更多
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet...Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.展开更多
Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmeth...Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmethyl)butane(bib)by a hydrothermal method,respectively.X⁃ray crystallography reveals a 2D network constructed by six⁃coordinated Ni(Ⅱ)centers,bib,and Hpdc2-ligands in complex 1,while a 2D network is built by Ni(Ⅱ)and bib ligands in 2.Furthermore,the quantum⁃chemical calculations have been performed on‘molecular fragments’extracted from the crystal structure of 1 using the PBE0/LANL2DZ method in Gaussian 16 and the VASP program.CCDC:2343794,1;2343798,2.展开更多
Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioni...Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.展开更多
The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,t...The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.展开更多
In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication q...In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators.展开更多
The electronic and topological properties of FeGe2 with a tetragonal crystal structure were investigated via first-principles calculations.The results demonstrate that FeGe2 in this structure exhibits anti-ferromagnet...The electronic and topological properties of FeGe2 with a tetragonal crystal structure were investigated via first-principles calculations.The results demonstrate that FeGe2 in this structure exhibits anti-ferromagnetism,with two bands crossing the Fermi level nesting each other at high-symmetry points in the Brillouin zone,forming a nodal ring where the nodes intersect in momentum space.Additionally,it possesses nontrivial topological surface states.Upon inclusion of SOC(spin-orbit coupling),there are no significant changes observed in the band structure,nodal features,or surface states,indicating the persistence of its topological nodal-line characteristics.展开更多
The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s...The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s economic benefits,minimize unnecessary costs,and provide decision-makers with a robust financial foundation.Additionally,implementing an effective cash flow control mechanism and conducting a comprehensive assessment of potential project risks can ensure financial stability and mitigate the risk of fund shortages.Developing a practical and feasible fundraising plan,along with stringent fund management practices,can prevent fund wastage and optimize fund utilization efficiency.These measures not only facilitate smooth project progression and improve project management efficiency but also enhance the project’s economic and social outcomes.展开更多
Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu allo...Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.展开更多
The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of form...The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds.展开更多
Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, p...Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density p versus porosity Ф, density times the square of compressional wave velocity p Vp^2 versus porosity, and density times the square of shear wave velocity pVs^2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.展开更多
To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based o...To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based on the field monitoring data of lateral soil pressure on the side wall of the open caisson for the southern anchorage of the Maanshan Yangtze River Highway Bridge, the statistical result of the side friction under different buried depths of the cutting edge of the open caisson was back-analyzed; and the side friction distribution of the large open caisson was underlined. The analysis results indicate that when the buried depth of the cutting edge is smaller than a certain depth H0, the side friction linearly increases with the increase in the buffed depth. However, as the buffed depth of the cutting edge is larger than H0, the side friction shows a distribution with small at both ends and large in the middle. The top of the distribution can be regarded as a linear curve, while the bottom as a hyperbolic curve. As the buffed depth of cutting edge increases continuously, the peak value of the side friction linearly increases and the location of the peak value gradually moves down. Based on the aforementioned conclusions, a revised calculation mode of the large open caisson is presented. Then, the calculated results are compared with the field monitoring data, which verifies the feasibility of the proposed revised calculation mode.展开更多
The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement wit...The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.展开更多
基金supported by VTT Technical Research Centre of Finland,Aalto University,Aerosint SA,and partially from European Union Horizon 2020 (No.768775)。
文摘Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.
基金supported by the National Key Research and Development Program of China[grant No.2018YFB2001800]National Natural Science Foundation of China[grant No.51871184]Dalian High-level Talents Innovation Support Program[grant No.2021RD06]。
文摘Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.
基金supported by the National Natural Science Foundation of China(Grant 52175236).
文摘This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design.The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads.The topology optimization formula is combined with the ordered solid isotropic material with penalization(ordered-SIMP)multi-material interpolation model.The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function.Furthermore,the sequential optimization and reliability assessment(SORA)is applied to transform the original uncertainty optimization problem into an equivalent deterministic topology optimization(DTO)problem.Stochastic response surface and sparse grid technique are combined with SORA to get accurate information on the most probable failure point(MPP).In each cycle,the equivalent topology optimization formula is updated according to the MPP information obtained in the previous cycle.The adjoint variable method is used for deriving the sensitivity of the stress constraint and the moving asymptote method(MMA)is used to update design variables.Finally,the validity and feasibility of the method are verified by the numerical example of L-shape beam design,T-shape structure design,steering knuckle,and 3D T-shaped beam.
基金supported in part by National Natural Science Foundation of China under Grant Nos.51675525,52005505,and 62001502Post-Graduate Scientific Research Innovation Project of Hunan Province under Grant No.XJCX2023185.
文摘In recent years,there has been significant research on the application of deep learning(DL)in topology optimization(TO)to accelerate structural design.However,these methods have primarily focused on solving binary TO problems,and effective solutions for multi-material topology optimization(MMTO)which requires a lot of computing resources are still lacking.Therefore,this paper proposes the framework of multiphase topology optimization using deep learning to accelerate MMTO design.The framework employs convolutional neural network(CNN)to construct a surrogate model for solving MMTO,and the obtained surrogate model can rapidly generate multi-material structure topologies in negligible time without any iterations.The performance evaluation results show that the proposed method not only outputs multi-material topologies with clear material boundary but also reduces the calculation cost with high prediction accuracy.Additionally,in order to find a more reasonable modeling method for MMTO,this paper studies the characteristics of surrogate modeling as regression task and classification task.Through the training of 297 models,our findings show that the regression task yields slightly better results than the classification task in most cases.Furthermore,The results indicate that the prediction accuracy is primarily influenced by factors such as the TO problem,material category,and data scale.Conversely,factors such as the domain size and the material property have minimal impact on the accuracy.
基金financial support from the National Natural Science Foundation of China (Grant No. 12227901)the financial support from the National Natural Science Foundation of China (Grant Nos. 11974263 and 12174291)。
文摘We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.
基金financial support from the National Natural Science Foundation of China(21676036)the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing(CYS-20040)。
文摘As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.
文摘For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.
基金supported by the Natural Science Foundation of China under Grant U22A20214 and Grant 51837010。
文摘A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method has been established in early literature. However, its practical applications and significance in advancing the analysis of AC machines need further elaboration. This paper aims to complement VAM by augmenting its theory, offering additional insights into its conclusions, as well as demonstrating its utility in assessing armature windings and its application of calculating torque for permanent magnet synchronous machines(PMSM). This work contributes to advancing the analysis of AC machines and underscores the potential for improved design and performance optimization.
基金supported by the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2023RCZX032)the Natural Science Foundation of Guangdong Province(2022A1515010185)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-005A3)partially supported by the Special Funds for Postdoctoral Research at Tsinghua University(100415017)。
文摘Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.
文摘Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmethyl)butane(bib)by a hydrothermal method,respectively.X⁃ray crystallography reveals a 2D network constructed by six⁃coordinated Ni(Ⅱ)centers,bib,and Hpdc2-ligands in complex 1,while a 2D network is built by Ni(Ⅱ)and bib ligands in 2.Furthermore,the quantum⁃chemical calculations have been performed on‘molecular fragments’extracted from the crystal structure of 1 using the PBE0/LANL2DZ method in Gaussian 16 and the VASP program.CCDC:2343794,1;2343798,2.
基金funded by the National Natural Science Foundation of China(52077004)Anhui Electric Power Company of the State Grid(52120021N00L).
文摘Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.
基金supported by the China National Railway Group Corporation Science and Technology Research and Development Program(J2022G009)Dr.Jingjing Li received no grant support.
文摘The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.
基金sponsored by the National Natural Science Foundation,Youth Foundation of China,Grant/Award Number:51607146Sichuan Natural Sciences Fund,Grant/Award Number:2023NSFSC0295。
文摘In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators.
文摘The electronic and topological properties of FeGe2 with a tetragonal crystal structure were investigated via first-principles calculations.The results demonstrate that FeGe2 in this structure exhibits anti-ferromagnetism,with two bands crossing the Fermi level nesting each other at high-symmetry points in the Brillouin zone,forming a nodal ring where the nodes intersect in momentum space.Additionally,it possesses nontrivial topological surface states.Upon inclusion of SOC(spin-orbit coupling),there are no significant changes observed in the band structure,nodal features,or surface states,indicating the persistence of its topological nodal-line characteristics.
文摘The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s economic benefits,minimize unnecessary costs,and provide decision-makers with a robust financial foundation.Additionally,implementing an effective cash flow control mechanism and conducting a comprehensive assessment of potential project risks can ensure financial stability and mitigate the risk of fund shortages.Developing a practical and feasible fundraising plan,along with stringent fund management practices,can prevent fund wastage and optimize fund utilization efficiency.These measures not only facilitate smooth project progression and improve project management efficiency but also enhance the project’s economic and social outcomes.
基金Project(2012CB619504)supported by the National Basic Research Program of ChinaProject(51271037)supported by the National Natural Science Foundation of ChinaProject(2010DFB50340)supported by International Scientific and Technological Cooperation Projects of China
文摘Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.
基金Project supported by the National Key Laboratory Opening Funding of Advanced Composites in Special Environments in Harbin Institute of Technology,China
文摘The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds.
基金supported by the National Natural Science Foundation of China (Grant No.40874052)the Key Laboratory of Geo-detection (China University of Geosciences,Beijing),Ministry of Education
文摘Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density p versus porosity Ф, density times the square of compressional wave velocity p Vp^2 versus porosity, and density times the square of shear wave velocity pVs^2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.
基金Project supported by China Communications Construction Company Limited(No.2008-ZJKJ-11)
文摘To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based on the field monitoring data of lateral soil pressure on the side wall of the open caisson for the southern anchorage of the Maanshan Yangtze River Highway Bridge, the statistical result of the side friction under different buried depths of the cutting edge of the open caisson was back-analyzed; and the side friction distribution of the large open caisson was underlined. The analysis results indicate that when the buried depth of the cutting edge is smaller than a certain depth H0, the side friction linearly increases with the increase in the buffed depth. However, as the buffed depth of the cutting edge is larger than H0, the side friction shows a distribution with small at both ends and large in the middle. The top of the distribution can be regarded as a linear curve, while the bottom as a hyperbolic curve. As the buffed depth of cutting edge increases continuously, the peak value of the side friction linearly increases and the location of the peak value gradually moves down. Based on the aforementioned conclusions, a revised calculation mode of the large open caisson is presented. Then, the calculated results are compared with the field monitoring data, which verifies the feasibility of the proposed revised calculation mode.
基金Project(2010JK404) supported by the Education Committee Natural Science Foundation of Shaanxi Province,ChinaProjects(ZK0918,ZK0915) supported by the Baoji University of Arts and Sciences Key Research,China
文摘The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.