In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c...In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.展开更多
Numerical simulations of unsteady flow problems with moving boundaries commonly require the use of geometric conservation law(GCL).However,in cases of unidirectional large mesh deformation,the cumulative error caused ...Numerical simulations of unsteady flow problems with moving boundaries commonly require the use of geometric conservation law(GCL).However,in cases of unidirectional large mesh deformation,the cumulative error caused by the discrete procedure in GCL can significantly increase,and a direct consequence is that the calculated cell volume may become negative.To control the cumulative error,a new discrete GCL(D-GCL)is proposed.Unlike the original D-GCL,the proposed method uses the control volume analytically evaluated according to the grid motion at the time level n,instead of using the calculated value from the D-GCL itself.Error analysis indicates that the truncation error of the numerical scheme is guaranteed to be the same order as that obtained from the original D-GCL,while the accumulated error is greatly reduced.For validation,two challenging large deformation cases including a rotating circular cylinder case and a descending GAW-(1)two-element airfoil case are selected to be investigated.Good agreements are found between the calculated results and some other literature data,demonstrating the feasibility of the proposed D-GCL for unidirectional motions with large displacements.展开更多
In this article, the mathematical model of the coupling of the three-dimensional fluid flow and the large deformation of membrane structure is established. The fluid-structure coupling interaction is simulated using t...In this article, the mathematical model of the coupling of the three-dimensional fluid flow and the large deformation of membrane structure is established. The fluid-structure coupling interaction is simulated using the computational codes developed by the authors. By analyzing the interactions of membrane and flow field, the aeroelasticity of the airship is detailed. All the results are adopted in the focused study of the stratosphere airship in trimmed state.展开更多
Seismic tomography reveals an “R-shape” regional flow constrained between the depths of 50 to 80 km in the Southeastern Tibetan Plateau (STP) which demonstrates some of the differences revealed by the magnetotelluri...Seismic tomography reveals an “R-shape” regional flow constrained between the depths of 50 to 80 km in the Southeastern Tibetan Plateau (STP) which demonstrates some of the differences revealed by the magnetotelluric (MT) soundings in some areas. The “R-shape” flow could be present in both the lower crust and uppermost mantle, but not in the lower crust above the Moho discontinuity. Lateral flow has been imaged under the Qiangtang and Songpan-Ganzi blocks while two channel flows have been revealed beneath the south part of the STP with the eastward lateral flow from the Qiangtang block separating into two channel flows. One branch turns southwards at the south Qiangtang block, along the Bangong-Nujiang fault reaching to the Indochina block, and another is across the Songpan-Ganzi block (fold system) which then separates into northward and southward parts. The northward branch is along the edge of the north Sichuan basin reaching to the Qingling fault and the southward channel turns south along the Anninghe fault, then turns eastward along the margins of the south Sichuan basin. Our study suggests that the crustal deformation along the deep, large sutures (such as the Longmen Shan fault zone) is maintained by dynamic pressure from the regional flow intermingled with the hot upwelling asthenosphere. The material in the lower crust and uppermost mantle flowing outward from the center of the plateau is buttressed by the old, strong lithosphere that underlies the Sichuan basin, pushing up on the crust above and maintaining steep topography through dynamic pressure. We therefore consider that the “R-shape” regional flow played a key role in the crustal deformation along the deep suture zones of the Bangong-Nujiang, the Longmen-Shan faults, and other local heavily faulted zones.展开更多
基金This project (No. 49070196) is funded by the National Science Foundation of China.
文摘In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.
基金supported by the National Basic Research Program of China(″973″Project)(No.2014CB046200)
文摘Numerical simulations of unsteady flow problems with moving boundaries commonly require the use of geometric conservation law(GCL).However,in cases of unidirectional large mesh deformation,the cumulative error caused by the discrete procedure in GCL can significantly increase,and a direct consequence is that the calculated cell volume may become negative.To control the cumulative error,a new discrete GCL(D-GCL)is proposed.Unlike the original D-GCL,the proposed method uses the control volume analytically evaluated according to the grid motion at the time level n,instead of using the calculated value from the D-GCL itself.Error analysis indicates that the truncation error of the numerical scheme is guaranteed to be the same order as that obtained from the original D-GCL,while the accumulated error is greatly reduced.For validation,two challenging large deformation cases including a rotating circular cylinder case and a descending GAW-(1)two-element airfoil case are selected to be investigated.Good agreements are found between the calculated results and some other literature data,demonstrating the feasibility of the proposed D-GCL for unidirectional motions with large displacements.
文摘In this article, the mathematical model of the coupling of the three-dimensional fluid flow and the large deformation of membrane structure is established. The fluid-structure coupling interaction is simulated using the computational codes developed by the authors. By analyzing the interactions of membrane and flow field, the aeroelasticity of the airship is detailed. All the results are adopted in the focused study of the stratosphere airship in trimmed state.
文摘Seismic tomography reveals an “R-shape” regional flow constrained between the depths of 50 to 80 km in the Southeastern Tibetan Plateau (STP) which demonstrates some of the differences revealed by the magnetotelluric (MT) soundings in some areas. The “R-shape” flow could be present in both the lower crust and uppermost mantle, but not in the lower crust above the Moho discontinuity. Lateral flow has been imaged under the Qiangtang and Songpan-Ganzi blocks while two channel flows have been revealed beneath the south part of the STP with the eastward lateral flow from the Qiangtang block separating into two channel flows. One branch turns southwards at the south Qiangtang block, along the Bangong-Nujiang fault reaching to the Indochina block, and another is across the Songpan-Ganzi block (fold system) which then separates into northward and southward parts. The northward branch is along the edge of the north Sichuan basin reaching to the Qingling fault and the southward channel turns south along the Anninghe fault, then turns eastward along the margins of the south Sichuan basin. Our study suggests that the crustal deformation along the deep, large sutures (such as the Longmen Shan fault zone) is maintained by dynamic pressure from the regional flow intermingled with the hot upwelling asthenosphere. The material in the lower crust and uppermost mantle flowing outward from the center of the plateau is buttressed by the old, strong lithosphere that underlies the Sichuan basin, pushing up on the crust above and maintaining steep topography through dynamic pressure. We therefore consider that the “R-shape” regional flow played a key role in the crustal deformation along the deep suture zones of the Bangong-Nujiang, the Longmen-Shan faults, and other local heavily faulted zones.