期刊文献+
共找到10,073篇文章
< 1 2 250 >
每页显示 20 50 100
‘Partly'globalized networks and driving mechanism in resource-based state-owned enterprises:A case study of J Group 被引量:1
1
作者 Jing Xu Yongchun Yang +1 位作者 Yongjiao Zhang Shan Man 《Geography and Sustainability》 CSCD 2024年第1期77-88,共12页
In the context of economic globalization,while multinational enterprises from developed countries occupy a high-end position in the global value chain,enterprises from developing countries are often marginalized in th... In the context of economic globalization,while multinational enterprises from developed countries occupy a high-end position in the global value chain,enterprises from developing countries are often marginalized in the world market.In China,resource-based state-owned enterprises(SOEs)are tasked with the mission of safeguarding resource security,and their internationalization development ideas and strategic deployment are significantly and fundamentally different from those of other non-state-owned enterprises and large multinational corporations.This study provides ideas for the globalization policies of enterprises in developing countries.We consider J Group in western China as a case and discuss its productive investment and global production network development from 2010 to 2019.We found that J Group was‘Partly'globalized,and there are multiple core nodes with the characteristics of centralized and decentralized coexistence in the production network;in addition,the overall layout centre shifted to Southeast Asia and China;however,its global production was restricted by the enterprise's investment security considerations,support and restrictions of the home country,political security risk of the host country,and sanctions from the West.These findings provide insights for future research:under the wave of anti-globalization and'internal circulation as the main body',resource SOEs should consider the potential risk of investment,especially keeping the middle and downstream industrial chain in China as much as possible. 展开更多
关键词 Global production networks Global value chain Productive investment resource SOEs J Group ‘Partly'globalized
下载PDF
AMAD:Adaptive Mapping Approach for Datacenter Networks,an Energy-Friend Resource Allocation Framework via Repeated Leader Follower Game
2
作者 Ahmad Nahar Quttoum Muteb Alshammari 《Computers, Materials & Continua》 SCIE EI 2024年第9期4577-4601,共25页
Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict th... Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs. 展开更多
关键词 Data center networks energy-aware resource management resource utilization game-theory mechanisms
下载PDF
A Self-Attention Based Dynamic Resource Management for Satellite-Terrestrial Networks
3
作者 Lin Tianhao Luo Zhiyong 《China Communications》 SCIE CSCD 2024年第4期136-150,共15页
The satellite-terrestrial networks possess the ability to transcend geographical constraints inherent in traditional communication networks,enabling global coverage and offering users ubiquitous computing power suppor... The satellite-terrestrial networks possess the ability to transcend geographical constraints inherent in traditional communication networks,enabling global coverage and offering users ubiquitous computing power support,which is an important development direction of future communications.In this paper,we take into account a multi-scenario network model under the coverage of low earth orbit(LEO)satellite,which can provide computing resources to users in faraway areas to improve task processing efficiency.However,LEO satellites experience limitations in computing and communication resources and the channels are time-varying and complex,which makes the extraction of state information a daunting task.Therefore,we explore the dynamic resource management issue pertaining to joint computing,communication resource allocation and power control for multi-access edge computing(MEC).In order to tackle this formidable issue,we undertake the task of transforming the issue into a Markov decision process(MDP)problem and propose the self-attention based dynamic resource management(SABDRM)algorithm,which effectively extracts state information features to enhance the training process.Simulation results show that the proposed algorithm is capable of effectively reducing the long-term average delay and energy consumption of the tasks. 展开更多
关键词 mobile edge computing resource management satellite-terrestrial networks self-attention
下载PDF
Joint Allocation of Computing and Connectivity Resources in Survivable Inter-Datacenter Elastic Optical Networks
4
作者 Yang Tao Li Yang Chen Xue 《China Communications》 SCIE CSCD 2024年第8期172-181,共10页
Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to ... Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to realize joint allocation of computing and connectivity resources in survivable inter-datacenter EONs,a survivable routing,modulation level,spectrum,and computing resource allocation algorithm(SRMLSCRA)algorithm and three datacenter selection strategies,i.e.Computing Resource First(CRF),Shortest Path First(SPF)and Random Destination(RD),are proposed for different scenarios.Unicast and manycast are applied to the communication of computing requests,and the routing strategies are calculated respectively.Simulation results show that SRMLCRA-CRF can serve the largest amount of protected computing tasks,and the requested calculation blocking probability is reduced by 29.2%,28.3%and 30.5%compared with SRMLSCRA-SPF,SRMLSCRA-RD and the benchmark EPS-RMSA algorithms respectively.Therefore,it is more applicable to the networks with huge calculations.Besides,SRMLSCRA-SPF consumes the least spectrum,thereby exhibiting its suitability for scenarios where the amount of calculation is small and communication resources are scarce.The results demonstrate that the proposed methods realize the joint allocation of computing and connectivity resources,and could provide efficient protection for services under single-link failure and occupy less spectrum. 展开更多
关键词 computing and connectivity interdatacenter networks joint resource allocation service protection
下载PDF
Resource Allocation in Multi-User Cellular Networks:A Transformer-Based Deep Reinforcement Learning Approach
5
作者 Zhao Di Zheng Zhong +2 位作者 Qin Pengfei Qin Hao Song Bin 《China Communications》 SCIE CSCD 2024年第5期77-96,共20页
To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlin... To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlink cellular scenario with the aim of maximizing system spectral efficiency while guaranteeing user fairness.We first model the MSMURA problem as a dual-sequence decision-making process,and then solve it by a novel Transformerbased deep reinforcement learning(TDRL)approach.Specifically,the proposed TDRL approach can be achieved based on two aspects:1)To adapt to the dynamic wireless environment,the proximal policy optimization(PPO)algorithm is used to optimize the multi-slot RA strategy.2)To avoid co-channel interference,the Transformer-based PPO algorithm is presented to obtain the optimal multi-user RA scheme by exploring the mapping between user sequence and resource sequence.Experimental results show that:i)the proposed approach outperforms both the traditional and DRL methods in spectral efficiency and user fairness,ii)the proposed algorithm is superior to DRL approaches in terms of convergence speed and generalization performance. 展开更多
关键词 dynamic resource allocation multi-user cellular network spectrum efficiency user fairness
下载PDF
Online Learning-Based Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
6
作者 Tong Minglei Li Song +1 位作者 Han Wanjiang Wang Xiaoxiang 《China Communications》 SCIE CSCD 2024年第3期230-246,共17页
Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal ... Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes. 展开更多
关键词 computing resource allocation mobile edge computing satellite-terrestrial networks task offloading decision
下载PDF
Resource Allocation for Cognitive Network Slicing in PD-SCMA System Based on Two-Way Deep Reinforcement Learning
7
作者 Zhang Zhenyu Zhang Yong +1 位作者 Yuan Siyu Cheng Zhenjie 《China Communications》 SCIE CSCD 2024年第6期53-68,共16页
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se... In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users. 展开更多
关键词 cognitive radio deep reinforcement learning network slicing power-domain non-orthogonal multiple access resource allocation
下载PDF
Resource Allocation for IRS Assistedmm Wave Wireless Powered Sensor Networks with User Cooperation
8
作者 Yonghui Lin Zhengyu Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期663-677,共15页
In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET... In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of theWET andWIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not. 展开更多
关键词 Intelligent reflecting surface millimeter wave wireless powered sensor networks user cooperation resource allocation
下载PDF
Mega-Constellations Based TT&C Resource Sharing: Keep Reliable Aeronautical Communication in an Emergency
9
作者 Haoran Xie Yafeng Zhan Jianhua Lu 《China Communications》 SCIE CSCD 2024年第2期1-16,共16页
With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of... With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of the aircraft play an important role in the judgment and command of the Operational Control Center(OCC). However, how to transmit various operational status data from abnormal aircraft back to the OCC in an emergency is still an open problem. In this paper, we propose a novel Telemetry, Tracking,and Command(TT&C) architecture named Collaborative TT&C(CoTT&C) based on mega-constellation to solve such a problem. CoTT&C allows each satellite to help the abnormal aircraft by sharing TT&C resources when needed, realizing real-time and reliable aeronautical communication in an emergency. Specifically, we design a dynamic resource sharing mechanism for CoTT&C and model the mechanism as a single-leader-multi-follower Stackelberg game. Further, we give an unique Nash Equilibrium(NE) of the game as a closed form. Simulation results demonstrate that the proposed resource sharing mechanism is effective, incentive compatible, fair, and reciprocal. We hope that our findings can shed some light for future research on aeronautical communications in an emergency. 展开更多
关键词 aeronautical emergency communication mega-constellation networked TT&C resource allocation stackelberg game
下载PDF
Downlink Resource Allocation for NOMA-Based Hybrid Spectrum Access in Cognitive Network 被引量:2
10
作者 Yong Zhang Zhenjie Cheng +3 位作者 Da Guo Siyu Yuan Tengteng Ma Zhenyu Zhang 《China Communications》 SCIE CSCD 2023年第9期171-184,共14页
To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources i... To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources in a downlink multi-user cognitive radio(CR)network with slicing.Secondary users(SUs)are multiplexed using non-orthogonal multiple access(NOMA).The SUs use the hybrid spectrum access mode to improve the spectral efficiency(SE).Considering the demand for multiple services,the enhanced mobile broadband(eMBB)slice and ultrareliable low-latency communication(URLLC)slice were established.The proposed scheme can maximize the SE while ensuring Quality of Service(QoS)for the users.This study established a mapping relationship between resource allocation and the DQN algorithm in the CR-NOMA network.According to the signal-to-interference-plusnoise ratio(SINR)of the primary users(PUs),the proposed scheme can output the optimal channel selection and power allocation.The simulation results reveal that the proposed scheme can converge faster and obtain higher rewards compared with the Q-Learning scheme.Additionally,the proposed scheme has better SE than both the overlay and underlay only modes. 展开更多
关键词 cognitive network network slicing non-orthogonal multiple access hybrid spectrum access resource allocation deep reinforcement learning
下载PDF
Adaptive Resource Allocation Algorithm for 5G Vehicular Cloud Communication
11
作者 Huanhuan Li Hongchang Wei +1 位作者 Zheliang Chen Yue Xu 《Computers, Materials & Continua》 SCIE EI 2024年第8期2199-2219,共21页
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro... The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency. 展开更多
关键词 5G vehicular networks mobile cloud communication resource allocation channel capacity network connectivity communication radius objective function
下载PDF
SFC placement and dynamic resource allocation based on VNF performance-resource function and service requirement in cloud-edge environment
12
作者 HAN Yingchao MENG Weixiao FAN Wentao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期906-921,共16页
With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the netw... With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources. 展开更多
关键词 cloud-edge environment virtual network function(VNF)performance-resource(P-R)function edge resource allo-cation
下载PDF
Optimizing Resource Management for IoT Devices in Constrained Environments
13
作者 Sadia Islam Nilima Md Khokan Bhuyan +3 位作者 Md Kamruzzaman Jahanara Akter Rakibul Hasan Fatema Tuz Johora 《Journal of Computer and Communications》 2024年第8期81-98,共18页
Embedded computing device implementation on the Internet of Things (IoT) requires careful assessment of their intrinsic resource limitations. These constraints are not limited to memory and processing capabilities but... Embedded computing device implementation on the Internet of Things (IoT) requires careful assessment of their intrinsic resource limitations. These constraints are not limited to memory and processing capabilities but extend to the network interfaces, particularly due to the low-power radio standards that these devices typically employ. The IPv6 protocol is shown to be a strong option for guaranteeing interoperability in the IoT, mostly because of its large address space, the range of current IP-based protocols, and its intrinsic versatility. Considering these benefits, we investigate if current IP-based network management protocols can be implemented on devices with limited resources. We investigate the resource needs in particular for implementing Network Configuration Protocol (NETCONF) and Simple Network Management Protocol (SNMP) on an 8-bit AVR-based device. Our investigation reveals the specific memory and processing demands of these protocols, providing valuable insights into their practicality and efficiency in constrained IoT environments. This study underscores the potential and challenges of leveraging IPv6-based network management protocols to enhance the functionality and interoperability of IoT devices while operating within stringent resource limitations. 展开更多
关键词 Internet of Things resource Constraint IPv6 Protocol IP-Based network Management network Management Protocol network Configuration Protocol
下载PDF
A dynamic and resource sharing virtual network mapping algorithm
14
作者 Xiancui Xiao Xiangwei Zheng +2 位作者 Ji Bian Cun Ji Xinchun Cui 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1101-1112,共12页
Network virtualization can effectively establish dedicated virtual networks to implement various network functions.However,the existing research works have some shortcomings,for example,although computing resource pro... Network virtualization can effectively establish dedicated virtual networks to implement various network functions.However,the existing research works have some shortcomings,for example,although computing resource properties of individual nodes are considered,node storage properties and the network topology properties are usually ignored in Virtual Network(VN)modelling,which leads to the inaccurate measurement of node availability and priority.In addition,most static virtual network mapping methods allocate fixed resources to users during the entire life cycle,and the users’actual resource requirements vary with the workload,which results in resource allocation redundancy.Based on the above analysis,in this paper,we propose a dynamic resource sharing virtual network mapping algorithm named NMA-PRS-VNE,first,we construct a new,more realistic network framework in which the properties of nodes include computing resources,storage resources and topology properties.In the node mapping process,three properties of the node are used to measure its mapping ability.Second,we consider the resources of adjacent nodes and links instead of the traditional method of measuring the availability and priority of nodes by considering only the resource properties,so as to more accurately select the physical mapping nodes that meet the constraints and conditions and improve the success rate of subsequent link mapping.Finally,we divide the resource requirements of Virtual Network Requests(VNRs)into basic subrequirements and variable sub-variable requirements to complete dynamic resource allocation.The former represents monopolizing resource requirements by the VNRs,while the latter represents shared resources by many VNRs with the probability of occupying resources,where we keep a balance between resource sharing and collision among users by calculating the collision probability.Simulation results show that the proposed NMAPRS-VNE can increase the average acceptance rate and network revenue by 15%and 38%,and reduce the network cost and link pressure by 25%and 17%. 展开更多
关键词 network virtualization VNRs network frameworks Dynamic resource allocation resource sharing
下载PDF
Ultra Dense Satellite-Enabled 6G Networks:Resource Optimization and Interference Management
15
作者 Xiangnan Liu Haijun Zhang +3 位作者 Min Sheng Wei Li Saba Al-Rubaye Keping Long 《China Communications》 SCIE CSCD 2023年第10期262-275,共14页
With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integ... With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integrated terrestrial-satellite networks are integrated into ultra dense satellite-enabled 6G networks architecture.Then the subchannel and power allocation schemes for the downlink of the ultra dense satellite-enabled 6G heterogeneous networks are introduced.Satellite mobile edge computing(SMEC)with edge caching in three-layer heterogeneous networks serves to reduce the link traffic of networks.Furthermore,a scheme for interference management is presented,involving quality-of-service(QoS)and co-tier/cross-tier interference constraints.The simulation results show that the proposed schemes can significantly increase the total capacity of ultra dense satellite-enabled 6G heterogeneous networks. 展开更多
关键词 satellite-enabled 6G networks network architecture resource optimization interference management
下载PDF
Low Complexity Joint Spectrum Resource and Power Allocation for Ultra Dense Networks
16
作者 Qiang Wang Yanhu Huang Qingxiu Ma 《China Communications》 SCIE CSCD 2023年第5期104-118,共15页
In this paper,we propose a low complexity spectrum resource allocation scheme cross the access points(APs)for the ultra dense networks(UDNs),in which all the APs are divided into several AP groups(APGs)and the total b... In this paper,we propose a low complexity spectrum resource allocation scheme cross the access points(APs)for the ultra dense networks(UDNs),in which all the APs are divided into several AP groups(APGs)and the total bandwidth is divided into several narrow band spectrum resources and each spectrum resource is allocated to APGs independently to decrease the interference among the cells.Furthermore,we investigate the joint spectrum and power allocation problem in UDNs to maximize the overall throughput.The problem is formulated as a mixed-integer nonconvex optimization(MINCP)problem which is difficult to solve in general.The joint optimization problem is decomposed into two subproblems in terms of the spectrum allocation and power allocation respectively.For the spectrum allocation,we model it as a auction problem and a combinatorial auction approach is proposed to tackle it.In addition,the DC programming method is adopted to optimize the power allocation subproblem.To decrease the signaling and computational overhead,we propose a distributed algorithm based on the Lagrangian dual method.Simulation results illustrate that the proposed algorithm can effectively improve the system throughput. 展开更多
关键词 ultra dense networks resource allocation combinatorial auction optimization algorithm
下载PDF
Information Freshness-Oriented Trajectory Planning and Resource Allocation for UAV-Assisted Vehicular Networks
17
作者 Hao Gai Haixia Zhang +1 位作者 Shuaishuai Guo Dongfeng Yuan 《China Communications》 SCIE CSCD 2023年第5期244-262,共19页
In this paper,multi-UAV trajectory planning and resource allocation are jointly investigated to improve the information freshness for vehicular networks,where the vehicles collect time-critical traffic information by ... In this paper,multi-UAV trajectory planning and resource allocation are jointly investigated to improve the information freshness for vehicular networks,where the vehicles collect time-critical traffic information by on-board sensors and upload to the UAVs through their allocated spectrum resource.We adopt the expected sum age of information(ESAoI)to measure the network-wide information freshness.ESAoI is jointly affected by both the UAVs trajectory and the resource allocation,which are coupled with each other and make the analysis of ESAoI challenging.To tackle this challenge,we introduce a joint trajectory planning and resource allocation procedure,where the UAVs firstly fly to their destinations and then hover to allocate resource blocks(RBs)during a time-slot.Based on this procedure,we formulate a trajectory planning and resource allocation problem for ESAoI minimization.To solve the mixed integer nonlinear programming(MINLP)problem with hybrid decision variables,we propose a TD3 trajectory planning and Round-robin resource allocation(TTPRRA).Specifically,we exploit the exploration and learning ability of the twin delayed deep deterministic policy gradient algorithm(TD3)for UAVs trajectory planning,and utilize Round Robin rule for the optimal resource allocation.With TTP-RRA,the UAVs obtain their flight velocities by sensing the locations and the age of information(AoI)of the vehicles,then allocate the RBs to the vehicles in a descending order of AoI until the remaining RBs are not sufficient to support another successful uploading.Simulation results demonstrate that TTP-RRA outperforms the baseline approaches in terms of ESAoI and average AoI(AAoI). 展开更多
关键词 information freshness for vehicular networks multi-UAV trajectory planning resource allocation deep reinforcement learning
下载PDF
Dynamic Resource Allocation in LTE Radio Access Network Using Machine Learning Techniques
18
作者 Eric Michel Deussom Djomadji Ivan Basile Kabiena +2 位作者 Valery Nkemeni Ayrton Garcia Belinga À Njere Michael Ekonde Sone 《Journal of Computer and Communications》 2023年第6期73-93,共21页
Current LTE networks are experiencing significant growth in the number of users worldwide. The use of data services for online browsing, e-learning, online meetings and initiatives such as smart cities means that subs... Current LTE networks are experiencing significant growth in the number of users worldwide. The use of data services for online browsing, e-learning, online meetings and initiatives such as smart cities means that subscribers stay connected for long periods, thereby saturating a number of signalling resources. One of such resources is the Radio Resource Connected (RRC) parameter, which is allocated to eNodeBs with the aim of limiting the number of connected simultaneously in the network. The fixed allocation of this parameter means that, depending on the traffic at different times of the day and the geographical position, some eNodeBs are saturated with RRC resources (overused) while others have unused RRC resources. However, as these resources are limited, there is the problem of their underutilization (non-optimal utilization of resources at the eNodeB level) due to static allocation (manual configuration of resources). The objective of this paper is to design an efficient machine learning model that will take as input some key performance indices (KPIs) like traffic data, RRC, simultaneous users, etc., for each eNodeB per hour and per day and accurately predict the number of needed RRC resources that will be dynamically allocated to them in order to avoid traffic and financial losses to the mobile network operator. To reach this target, three machine learning algorithms have been studied namely: linear regression, convolutional neural networks and long short-term memory (LSTM) to train three models and evaluate them. The model trained with the LSTM algorithm gave the best performance with 97% accuracy and was therefore implemented in the proposed solution for RRC resource allocation. An interconnection architecture is also proposed to embed the proposed solution into the Operation and maintenance network of a mobile network operator. In this way, the proposed solution can contribute to developing and expanding the concept of Self Organizing Network (SON) used in 4G and 5G networks. 展开更多
关键词 RRC resources 4G network Linear Regression Convolutional Neural networks Long Short-Term Memory PRECISION
下载PDF
Optimal dispatching method of traffic incident rescue resource for freeway network 被引量:1
19
作者 柴干 冉旭 夏井新 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期336-341,共6页
An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of rout... An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios. 展开更多
关键词 optimal dispatching potential incident GENETICALGORITHM rescue resource freeway network
下载PDF
Qo E-based resource allocation protocols in cognitive OFDMA network with hybrid model
20
作者 鲍煦 张雷 宋铁成 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期1-4,共4页
A resource allocation protocol is presented in an orthogonal frequency division multiple access (OFDMA) cognitive radio (CR) network with a hybrid model which combines overlay and underlay models. Without disrupti... A resource allocation protocol is presented in an orthogonal frequency division multiple access (OFDMA) cognitive radio (CR) network with a hybrid model which combines overlay and underlay models. Without disrupting the primary user (PU) transmissions, the overlay model allows the secondary user (SU) to utilize opportunistically the idle sub-channels; the underlay model allows the SU to occupy the same sub-channels with PU. The proposed protocols are designed for maximizing the quality of experience (QoE) of CR users and switching dynamically between the overlay and underlay models. QoE is measured by the mean opinion score (MOS) rather than simply fulfilling the physical and medium access control (MAC) layer requirements. The simulations considering the file transfer and video stream services show that the proposed resource allocation strategy is spectrum efficient. 展开更多
关键词 resource allocation cognitive radio network orthogonal frequency division multiple access (OFDMA) quality of user experience mean opinion score
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部