期刊文献+
共找到8,865篇文章
< 1 2 250 >
每页显示 20 50 100
A Comprehensive Survey on Deep Learning Multi-Modal Fusion:Methods,Technologies and Applications
1
作者 Tianzhe Jiao Chaopeng Guo +2 位作者 Xiaoyue Feng Yuming Chen Jie Song 《Computers, Materials & Continua》 SCIE EI 2024年第7期1-35,共35页
Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant resear... Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges. 展开更多
关键词 multi-modal fusion REPRESENTATION TRANSLATION ALIGNMENT deep learning comparative analysis
下载PDF
Six-Dimensional Guidance: The Strategies of Thinking Quality Cultivation in Senior High School English Discourse Learning
2
作者 Junjie Sun 《Journal of Contemporary Educational Research》 2024年第3期237-245,共9页
Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the ... Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the six-skill training strategies of“memory skill training,understanding skill training,application skill training,analytical skill training,evaluation skill training,creative skill training,”this paper aims to cultivate students’thinking profundity,logic,flexibility,sensitivity,criticality,and originality.It also promotes the real implementation of senior high school English deep reading that points to the cultivation of thinking quality in classroom teaching,and realizes the transformation from“conventional reading”to“deep reading”that reflects the core literacy of the discipline. 展开更多
关键词 Six-dimensional guidance High school English Discourse learning Thinking quality Strategy
下载PDF
Application Strategies of Virtual Reality Technology in the Teaching Design of Vocational Courses from the Perspective of Learning Transfer Theory
3
作者 Shuyu Gong 《Journal of Contemporary Educational Research》 2024年第7期1-6,共6页
With the rapid development of virtual reality technology,it has been widely used in the field of education.It can promote the development of learning transfer,which is an effective method for learners to learn effecti... With the rapid development of virtual reality technology,it has been widely used in the field of education.It can promote the development of learning transfer,which is an effective method for learners to learn effectively.Therefore,this paper describes how to use virtual reality technology to achieve learning transfer in order to achieve teaching goals and improve learning efficiency. 展开更多
关键词 learning transfer Virtual reality technology Application strategy
下载PDF
PowerDetector:Malicious PowerShell Script Family Classification Based on Multi-Modal Semantic Fusion and Deep Learning 被引量:1
4
作者 Xiuzhang Yang Guojun Peng +2 位作者 Dongni Zhang Yuhang Gao Chenguang Li 《China Communications》 SCIE CSCD 2023年第11期202-224,共23页
Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and ... Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and malicious detection,lacking the malicious Power Shell families classification and behavior analysis.Moreover,the state-of-the-art methods fail to capture fine-grained features and semantic relationships,resulting in low robustness and accuracy.To this end,we propose Power Detector,a novel malicious Power Shell script detector based on multimodal semantic fusion and deep learning.Specifically,we design four feature extraction methods to extract key features from character,token,abstract syntax tree(AST),and semantic knowledge graph.Then,we intelligently design four embeddings(i.e.,Char2Vec,Token2Vec,AST2Vec,and Rela2Vec) and construct a multi-modal fusion algorithm to concatenate feature vectors from different views.Finally,we propose a combined model based on transformer and CNN-Bi LSTM to implement Power Shell family detection.Our experiments with five types of Power Shell attacks show that PowerDetector can accurately detect various obfuscated and stealth PowerShell scripts,with a 0.9402 precision,a 0.9358 recall,and a 0.9374 F1-score.Furthermore,through singlemodal and multi-modal comparison experiments,we demonstrate that PowerDetector’s multi-modal embedding and deep learning model can achieve better accuracy and even identify more unknown attacks. 展开更多
关键词 deep learning malicious family detection multi-modal semantic fusion POWERSHELL
下载PDF
A survey of multi-modal learning theory
5
作者 HUANG Yu HUANG Longbo 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2023年第5期38-49,共12页
Deep multi-modal learning,a rapidly growing field with a wide range of practical applications,aims to effectively utilize and integrate information from multiple sources,known as modalities.Despite its impressive empi... Deep multi-modal learning,a rapidly growing field with a wide range of practical applications,aims to effectively utilize and integrate information from multiple sources,known as modalities.Despite its impressive empirical performance,the theoretical foundations of deep multi-modal learning have yet to be fully explored.In this paper,we will undertake a comprehensive survey of recent developments in multi-modal learning theories,focusing on the fundamental properties that govern this field.Our goal is to provide a thorough collection of current theoretical tools for analyzing multi-modal learning,to clarify their implications for practitioners,and to suggest future directions for the establishment of a solid theoretical foundation for deep multi-modal learning. 展开更多
关键词 multi-modal learning machine learning theory OPTIMIZATION GENERALIZATION
下载PDF
Relationships Between Chinese EFL Learners’IELTS Band Score and Motivated Strategies for Learning
6
作者 ZHANG Yue 《Sino-US English Teaching》 2023年第10期400-408,共9页
EFL learners,who study English as a foreign language,often use different learning strategies in the learning process,with positive and negative results in their academic performance.Whether these learning strategies a... EFL learners,who study English as a foreign language,often use different learning strategies in the learning process,with positive and negative results in their academic performance.Whether these learning strategies are effective or not are questions to be explored.So,the author examined the relationship between Chinese EFL learners’test results and the use of motivated strategies for learning in English learning.Participants are students who have taken a high-stake standardized English proficiency test:IELTS(International English Language Testing System)with band score obtained.The results show that students’performance on high-stakes assessment is significantly associated with the use of motivated learning strategies like internal value in sharp contrast to test anxiety,which bears no relevance.Interviews are then implemented to candidates with different levels of English proficiency to figure out other related factors contributing to the test results. 展开更多
关键词 IELTS learning strategies test assessment EFL learners
下载PDF
A Brief Study of Second Language Learning Strategies From the Perspective of Error Analysis
7
作者 PAN Yuhua 《Sino-US English Teaching》 2023年第10期385-391,共7页
Language teaching is not a one-way process.It interacts with language learning in an extremely intricate way.To improve language teaching,we need to take the process of language learning into account.This paper tries ... Language teaching is not a one-way process.It interacts with language learning in an extremely intricate way.To improve language teaching,we need to take the process of language learning into account.This paper tries to explore and understand what strategies the second language learners consciously or subconsciously adopt during their language learning process through the analyses of the linguistic errors they commit,so as to provide some insights into language teaching practice. 展开更多
关键词 second language acquisition error analysis learning strategies language teaching
下载PDF
基于改进Q-Learning的移动机器人路径规划算法
8
作者 王立勇 王弘轩 +2 位作者 苏清华 王绅同 张鹏博 《电子测量技术》 北大核心 2024年第9期85-92,共8页
随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的... 随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的问题,本研究提出一种改进的Q-Learning算法。该算法改进Q矩阵赋值方法,使迭代前期探索过程具有指向性,并降低碰撞的情况;改进Q矩阵迭代方法,使Q矩阵更新具有前瞻性,避免在一个小区域中反复探索;改进随机探索策略,在迭代前期全面利用环境信息,后期向目标点靠近。在不同栅格地图仿真验证结果表明,本文算法在Q-Learning算法的基础上,通过上述改进降低探索过程中的路径长度、减少抖动并提高收敛的速度,具有更高的计算效率。 展开更多
关键词 路径规划 强化学习 移动机器人 Q-learning算法 ε-decreasing策略
下载PDF
Significant risk factors for intensive care unit-acquired weakness:A processing strategy based on repeated machine learning 被引量:9
9
作者 Ling Wang Deng-Yan Long 《World Journal of Clinical Cases》 SCIE 2024年第7期1235-1242,共8页
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr... BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration. 展开更多
关键词 Intensive care unit-acquired weakness Risk factors Machine learning PREVENTION strategies
下载PDF
How do the landslide and non-landslide sampling strategies impact landslide susceptibility assessment? d A catchment-scale case study from China 被引量:1
10
作者 Zizheng Guo Bixia Tian +2 位作者 Yuhang Zhu Jun He Taili Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期877-894,共18页
The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenz... The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM. 展开更多
关键词 Landslide susceptibility Sampling strategy Machine learning Random forest China
下载PDF
Cognitive interference decision method for air defense missile fuze based on reinforcement learning 被引量:1
11
作者 Dingkun Huang Xiaopeng Yan +2 位作者 Jian Dai Xinwei Wang Yangtian Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期393-404,共12页
To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-lea... To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference. 展开更多
关键词 Cognitive radio Interference decision Radio fuze Reinforcement learning Interference strategy optimization
下载PDF
Learning Strategies in Chinese EFL Learners' Reading Comprehension 被引量:1
12
作者 汪建丽 《陕西师范大学学报(哲学社会科学版)》 CSSCI 北大核心 2002年第S1期356-358,共3页
According to schema theory resulting from the psycholinguistic model of reading,comprehending a text is an interactive process between the reader background knowledge and the text. This article first views the psychol... According to schema theory resulting from the psycholinguistic model of reading,comprehending a text is an interactive process between the reader background knowledge and the text. This article first views the psycholinguistic model of reading and research in learning strategies, then discusses the application of socioaffective,cognitive, metacognitive learning strategies in Chinese EFL learners’ reading comprehension. 展开更多
关键词 schema theory learning strategy socioaffective COGNITIVE metacognitive
下载PDF
A Study on Different Learning Strategies Used by EFL Learners in China 被引量:3
13
作者 陈明辉 杨蕾达 《海外英语》 2011年第7X期124-125,共2页
This study explores how the Chinese learners apply the learning strategies in the language learning.The research examines how to understand EFL learners uses of learning strategies in language learning.The SILL(the St... This study explores how the Chinese learners apply the learning strategies in the language learning.The research examines how to understand EFL learners uses of learning strategies in language learning.The SILL(the Strategy Inventory for Language Learning) was the instrument of this study.The results show that the frequency of strategy use does not vary among the different levels of learners based on the SILL's mean scores.The results suggest that as the learners' levels become higher,the EFL learners tend to choose more strategies which are reflective of their active learning. 展开更多
关键词 learning strategies ENGLISH teaching SECOND language learning COLLEGE ENGLISH
下载PDF
基于多步信息辅助的Q-learning路径规划算法
14
作者 王越龙 王松艳 晁涛 《系统仿真学报》 CAS CSCD 北大核心 2024年第9期2137-2148,共12页
为提升静态环境下移动机器人路径规划能力,解决传统Q-learning算法在路径规划中收敛速度慢的问题,提出一种基于多步信息辅助机制的Q-learning改进算法。利用ε-greedy策略中贪婪动作的多步信息与历史最优路径长度更新资格迹,使有效的资... 为提升静态环境下移动机器人路径规划能力,解决传统Q-learning算法在路径规划中收敛速度慢的问题,提出一种基于多步信息辅助机制的Q-learning改进算法。利用ε-greedy策略中贪婪动作的多步信息与历史最优路径长度更新资格迹,使有效的资格迹在算法迭代中持续发挥作用,用保存的多步信息解决可能落入的循环陷阱;使用局部多花朵的花授粉算法初始化Q值表,提升机器人前期搜索效率;基于机器人不同探索阶段的目的,结合迭代路径长度的标准差与机器人成功到达目标点的次数设计动作选择策略,以增强算法对环境信息探索与利用的平衡能力。实验结果表明:该算法具有较快的收敛速度,验证了算法的可行性与有效性。 展开更多
关键词 路径规划 Q-learning 收敛速度 动作选择策略 栅格地图
下载PDF
A Hand Features Based Fusion Recognition Network with Enhancing Multi-Modal Correlation
15
作者 Wei Wu Yuan Zhang +2 位作者 Yunpeng Li Chuanyang Li YanHao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期537-555,共19页
Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and ... Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases. 展开更多
关键词 BIOMETRICS multi-modal CORRELATION deep learning feature-level fusion
下载PDF
Incorporation of Learning Strategies into Web-based Autonomous Listening 被引量:4
16
作者 李芳 《海外英语》 2019年第20期278-280,284,共4页
The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.... The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.The purpose of the study is to find how students'listening strategies differ in these two approaches and thereby to find which one better facilitates students'listening proficiency. 展开更多
关键词 learning strategies metacognitive strategies listening strategies WEB-BASED autonomous listening
下载PDF
An Incentive Mechanism for Federated Learning:A Continuous Zero-Determinant Strategy Approach
17
作者 Changbing Tang Baosen Yang +3 位作者 Xiaodong Xie Guanrong Chen Mohammed A.A.Al-qaness Yang Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期88-102,共15页
As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems rema... As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems remain, including privacy breaches, imbalances in payment, and inequitable distribution.These shortcomings let devices reluctantly contribute relevant data to, or even refuse to participate in FL. Therefore, in the application of FL, an important but also challenging issue is to motivate as many participants as possible to provide high-quality data to FL. In this paper, we propose an incentive mechanism for FL based on the continuous zero-determinant(CZD) strategies from the perspective of game theory. We first model the interaction between the server and the devices during the FL process as a continuous iterative game. We then apply the CZD strategies for two players and then multiple players to optimize the social welfare of FL, for which we prove that the server can keep social welfare at a high and stable level. Subsequently, we design an incentive mechanism based on the CZD strategies to attract devices to contribute all of their high-accuracy data to FL.Finally, we perform simulations to demonstrate that our proposed CZD-based incentive mechanism can indeed generate high and stable social welfare in FL. 展开更多
关键词 Federated learning(FL) game theory incentive mechanism machine learning zero-determinant strategy
下载PDF
Multi-modal knowledge graph inference via media convergence and logic rule
18
作者 Feng Lin Dongmei Li +5 位作者 Wenbin Zhang Dongsheng Shi Yuanzhou Jiao Qianzhong Chen Yiying Lin Wentao Zhu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期211-221,共11页
Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the intro... Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features. 展开更多
关键词 logic rule media convergence multi-modal knowledge graph inference representation learning
下载PDF
Generative Multi-Modal Mutual Enhancement Video Semantic Communications
19
作者 Yuanle Chen Haobo Wang +3 位作者 Chunyu Liu Linyi Wang Jiaxin Liu Wei Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2985-3009,共25页
Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the... Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the research and applications of natural language processing across different modalities,our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos.Specifically,we propose a deep learning-basedMulti-ModalMutual Enhancement Video Semantic Communication system,called M3E-VSC.Built upon a VectorQuantized Generative AdversarialNetwork(VQGAN),our systemaims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission.With it,the semantic information can be extracted fromkey-frame images and audio of the video and performdifferential value to ensure that the extracted text conveys accurate semantic information with fewer bits,thus improving the capacity of the system.Furthermore,a multi-frame semantic detection module is designed to facilitate semantic transitions during video generation.Simulation results demonstrate that our proposed model maintains high robustness in complex noise environments,particularly in low signal-to-noise ratio conditions,significantly improving the accuracy and speed of semantic transmission in video communication by approximately 50 percent. 展开更多
关键词 Generative adversarial networks multi-modal mutual enhancement video semantic transmission deep learning
下载PDF
Reinforcement Learning-Based Energy Management for Hybrid Power Systems:State-of-the-Art Survey,Review,and Perspectives
20
作者 Xiaolin Tang Jiaxin Chen +4 位作者 Yechen Qin Teng Liu Kai Yang Amir Khajepour Shen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期1-25,共25页
The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art ... The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control. 展开更多
关键词 New energy vehicle Hybrid power system Reinforcement learning Energy management strategy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部