期刊文献+
共找到19,432篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Modal Medical Image Fusion Based on Improved Parameter Adaptive PCNN and Latent Low-Rank Representation
1
作者 Zirui Tang Xianchun Zhou 《Instrumentation》 2024年第2期53-63,共11页
Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical ... Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes. 展开更多
关键词 image fusion improved parameter adaptive pcnn non-subsampled shear-wave transform latent low-rank representation
下载PDF
DCRL-KG: Distributed Multi-Modal Knowledge Graph Retrieval Platform Based on Collaborative Representation Learning
2
作者 Leilei Li Yansheng Fu +6 位作者 Dongjie Zhu Xiaofang Li Yundong Sun Jianrui Ding Mingrui Wu Ning Cao Russell Higgs 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3295-3307,共13页
The knowledge graph with relational abundant information has been widely used as the basic data support for the retrieval platforms.Image and text descriptions added to the knowledge graph enrich the node information,... The knowledge graph with relational abundant information has been widely used as the basic data support for the retrieval platforms.Image and text descriptions added to the knowledge graph enrich the node information,which accounts for the advantage of the multi-modal knowledge graph.In the field of cross-modal retrieval platforms,multi-modal knowledge graphs can help to improve retrieval accuracy and efficiency because of the abundant relational infor-mation provided by knowledge graphs.The representation learning method is sig-nificant to the application of multi-modal knowledge graphs.This paper proposes a distributed collaborative vector retrieval platform(DCRL-KG)using the multi-modal knowledge graph VisualSem as the foundation to achieve efficient and high-precision multimodal data retrieval.Firstly,use distributed technology to classify and store the data in the knowledge graph to improve retrieval efficiency.Secondly,this paper uses BabelNet to expand the knowledge graph through multi-ple filtering processes and increase the diversification of information.Finally,this paper builds a variety of retrieval models to achieve the fusion of retrieval results through linear combination methods to achieve high-precision language retrieval and image retrieval.The paper uses sentence retrieval and image retrieval experi-ments to prove that the platform can optimize the storage structure of the multi-modal knowledge graph and have good performance in multi-modal space. 展开更多
关键词 multi-modal retrieval distributed storage knowledge graph
下载PDF
A Comprehensive Survey on Deep Learning Multi-Modal Fusion:Methods,Technologies and Applications
3
作者 Tianzhe Jiao Chaopeng Guo +2 位作者 Xiaoyue Feng Yuming Chen Jie Song 《Computers, Materials & Continua》 SCIE EI 2024年第7期1-35,共35页
Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant resear... Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges. 展开更多
关键词 multi-modal fusion representation TRANSLATION ALIGNMENT deep learning comparative analysis
下载PDF
Multi-modal knowledge graph inference via media convergence and logic rule
4
作者 Feng Lin Dongmei Li +5 位作者 Wenbin Zhang Dongsheng Shi Yuanzhou Jiao Qianzhong Chen Yiying Lin Wentao Zhu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期211-221,共11页
Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the intro... Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features. 展开更多
关键词 logic rule media convergence multi-modal knowledge graph inference representation learning
下载PDF
A Hand Features Based Fusion Recognition Network with Enhancing Multi-Modal Correlation
5
作者 Wei Wu Yuan Zhang +2 位作者 Yunpeng Li Chuanyang Li YanHao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期537-555,共19页
Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and ... Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases. 展开更多
关键词 BIOMETRICS multi-modal CORRELATION deep learning feature-level fusion
下载PDF
Guest Editorial:Special issue on advances in representation learning for computer vision
6
作者 Andrew Beng Jin Teoh Thian Song Ong +1 位作者 Kian Ming Lim Chin Poo Lee 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期1-3,共3页
Deep learning has been a catalyst for a transformative revo-lution in machine learning and computer vision in the past decade.Within these research domains,methods grounded in deep learning have exhibited exceptional ... Deep learning has been a catalyst for a transformative revo-lution in machine learning and computer vision in the past decade.Within these research domains,methods grounded in deep learning have exhibited exceptional performance across a spectrum of tasks.The success of deep learning methods can be attributed to their capability to derive potent representations from data,integral for a myriad of downstream applications.These representations encapsulate the intrinsic structure,fea-tures,or latent variables characterising the underlying statistics of visual data.Despite these achievements,the challenge per-sists in effectively conducting representation learning of visual data with deep models,particularly when confronted with vast and noisy datasets.This special issue is a dedicated platform for researchers worldwide to disseminate their latest,high-quality articles,aiming to enhance readers'comprehension of the principles,limitations,and diverse applications of repre-sentation learning in computer vision. 展开更多
关键词 SPITE computer representation
下载PDF
Towards trustworthy multi-modal motion prediction:Holistic evaluation and interpretability of outputs
7
作者 Sandra Carrasco Limeros Sylwia Majchrowska +3 位作者 Joakim Johnander Christoffer Petersson MiguelÁngel Sotelo David Fernández Llorca 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期557-572,共16页
Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of po... Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of possible future trajectories can be consid-erable(multi-modal).Most prior approaches proposed to address multi-modal motion prediction are based on complex machine learning systems that have limited interpret-ability.Moreover,the metrics used in current benchmarks do not evaluate all aspects of the problem,such as the diversity and admissibility of the output.The authors aim to advance towards the design of trustworthy motion prediction systems,based on some of the re-quirements for the design of Trustworthy Artificial Intelligence.The focus is on evaluation criteria,robustness,and interpretability of outputs.First,the evaluation metrics are comprehensively analysed,the main gaps of current benchmarks are identified,and a new holistic evaluation framework is proposed.Then,a method for the assessment of spatial and temporal robustness is introduced by simulating noise in the perception system.To enhance the interpretability of the outputs and generate more balanced results in the proposed evaluation framework,an intent prediction layer that can be attached to multi-modal motion prediction models is proposed.The effectiveness of this approach is assessed through a survey that explores different elements in the visualisation of the multi-modal trajectories and intentions.The proposed approach and findings make a significant contribution to the development of trustworthy motion prediction systems for autono-mous vehicles,advancing the field towards greater safety and reliability. 展开更多
关键词 autonomous vehicles EVALUATION INTERPRETABILITY multi-modal motion prediction ROBUSTNESS trustworthy AI
下载PDF
IndRT-GCNets: Knowledge Reasoning with Independent Recurrent Temporal Graph Convolutional Representations
8
作者 Yajing Ma Gulila Altenbek Yingxia Yu 《Computers, Materials & Continua》 SCIE EI 2024年第1期695-712,共18页
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr... Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness. 展开更多
关键词 Knowledge reasoning entity and relation representation structural dependency relationship evolutionary representation temporal graph convolution
下载PDF
Learning Dual-Layer User Representation for Enhanced Item Recommendation
9
作者 Fuxi Zhu Jin Xie Mohammed Alshahrani 《Computers, Materials & Continua》 SCIE EI 2024年第7期949-971,共23页
User representation learning is crucial for capturing different user preferences,but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated... User representation learning is crucial for capturing different user preferences,but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated data,and thus cannot be measured directly.Text-based data models can learn user representations by mining latent semantics,which is beneficial to enhancing the semantic function of user representations.However,these technologies only extract common features in historical records and cannot represent changes in user intentions.However,sequential feature can express the user’s interests and intentions that change time by time.But the sequential recommendation results based on the user representation of the item lack the interpretability of preference factors.To address these issues,we propose in this paper a novel model with Dual-Layer User Representation,named DLUR,where the user’s intention is learned based on two different layer representations.Specifically,the latent semantic layer adds an interactive layer based on Transformer to extract keywords and key sentences in the text and serve as a basis for interpretation.The sequence layer uses the Transformer model to encode the user’s preference intention to clarify changes in the user’s intention.Therefore,this dual-layer user mode is more comprehensive than a single text mode or sequence mode and can effectually improve the performance of recommendations.Our extensive experiments on five benchmark datasets demonstrate DLUR’s performance over state-of-the-art recommendation models.In addition,DLUR’s ability to explain recommendation results is also demonstrated through some specific cases. 展开更多
关键词 User representation latent semantic sequential feature INTERPRETABILITY
下载PDF
Research on Multi-modal In-Vehicle Intelligent Personal Assistant Design
10
作者 WANG Jia-rou TANG Cheng-xin SHUAI Liang-ying 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期136-146,共11页
Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent... Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust. 展开更多
关键词 Intelligent personal assistants multi-modal design User psychology In-vehicle interaction Voice interaction Emotional design
下载PDF
Generative Multi-Modal Mutual Enhancement Video Semantic Communications
11
作者 Yuanle Chen Haobo Wang +3 位作者 Chunyu Liu Linyi Wang Jiaxin Liu Wei Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2985-3009,共25页
Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the... Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the research and applications of natural language processing across different modalities,our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos.Specifically,we propose a deep learning-basedMulti-ModalMutual Enhancement Video Semantic Communication system,called M3E-VSC.Built upon a VectorQuantized Generative AdversarialNetwork(VQGAN),our systemaims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission.With it,the semantic information can be extracted fromkey-frame images and audio of the video and performdifferential value to ensure that the extracted text conveys accurate semantic information with fewer bits,thus improving the capacity of the system.Furthermore,a multi-frame semantic detection module is designed to facilitate semantic transitions during video generation.Simulation results demonstrate that our proposed model maintains high robustness in complex noise environments,particularly in low signal-to-noise ratio conditions,significantly improving the accuracy and speed of semantic transmission in video communication by approximately 50 percent. 展开更多
关键词 Generative adversarial networks multi-modal mutual enhancement video semantic transmission deep learning
下载PDF
C-CORE:Clustering by Code Representation to Prioritize Test Cases in Compiler Testing
12
作者 Wei Zhou Xincong Jiang Chuan Qin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2069-2093,共25页
Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount impo... Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI.One widely used testing method for this purpose is fuzz testing,which detects bugs by inputting random test cases into the target program.However,this process consumes significant time and resources.To improve the efficiency of compiler fuzz testing,it is common practice to utilize test case prioritization techniques.Some researchers use machine learning to predict the code coverage of test cases,aiming to maximize the test capability for the target compiler by increasing the overall predicted coverage of the test cases.Nevertheless,these methods can only forecast the code coverage of the compiler at a specific optimization level,potentially missing many optimization-related bugs.In this paper,we introduce C-CORE(short for Clustering by Code Representation),the first framework to prioritize test cases according to their code representations,which are derived directly from the source codes.This approach avoids being limited to specific compiler states and extends to a broader range of compiler bugs.Specifically,we first train a scaled pre-trained programming language model to capture as many common features as possible from the test cases generated by a fuzzer.Using this pre-trained model,we then train two downstream models:one for predicting the likelihood of triggering a bug and another for identifying code representations associated with bugs.Subsequently,we cluster the test cases according to their code representations and select the highest-scoring test case from each cluster as the high-quality test case.This reduction in redundant testing cases leads to time savings.Comprehensive evaluation results reveal that code representations are better at distinguishing test capabilities,and C-CORE significantly enhances testing efficiency.Across four datasets,C-CORE increases the average of the percentage of faults detected(APFD)value by 0.16 to 0.31 and reduces test time by over 50% in 46% of cases.When compared to the best results from approaches using predicted code coverage,C-CORE improves the APFD value by 1.1% to 12.3% and achieves an overall time-saving of 159.1%. 展开更多
关键词 Compiler testing test case prioritization code representation
下载PDF
Sparse representation scheme with enhanced medium pixel intensity for face recognition
13
作者 Xuexue Zhang Yongjun Zhang +3 位作者 Zewei Wang Wei Long Weihao Gao Bob Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期116-127,共12页
Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in ... Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class-specific information of the test sample,which is very important for classification.For deformable images such as human faces,pixels at the same location of different images of the same subject usually have different intensities.Therefore,extracting features and correctly classifying such deformable objects is very hard.Moreover,the lighting,attitude and occlusion cause more difficulty.Considering the problems and challenges listed above,a novel image representation and classification algorithm is proposed.First,the authors’algorithm generates virtual samples by a non-linear variation method.This method can effectively extract the low-frequency information of space-domain features of the original image,which is very useful for representing deformable objects.The combination of the original and virtual samples is more beneficial to improve the clas-sification performance and robustness of the algorithm.Thereby,the authors’algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme.The weighting coefficients in the score fusion scheme are set entirely automatically.Finally,the algorithm classifies the samples based on the final scores.The experimental results show that our method performs better classification than conventional sparse representation algorithms. 展开更多
关键词 computer vision face recognition image classification image representation
下载PDF
MarkINeRV: A Robust Watermarking Scheme for Neural Representation for Videos Based on Invertible Neural Networks
14
作者 Wenquan Sun Jia Liu +2 位作者 Lifeng Chen Weina Dong Fuqiang Di 《Computers, Materials & Continua》 SCIE EI 2024年第9期4031-4046,共16页
Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit metho... Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit methods exist for accurately embedding ownership or copyright information in video data,the nascent NeRV framework has yet to address this issue comprehensively.In response,this paper introduces MarkINeRV,a scheme designed to embed watermarking information into video frames using an invertible neural network watermarking approach to protect the copyright of NeRV,which models the embedding and extraction of watermarks as a pair of inverse processes of a reversible network and employs the same network to achieve embedding and extraction of watermarks.It is just that the information flow is in the opposite direction.Additionally,a video frame quality enhancement module is incorporated to mitigate watermarking information losses in the rendering process and the possibility ofmalicious attacks during transmission,ensuring the accurate extraction of watermarking information through the invertible network’s inverse process.This paper evaluates the accuracy,robustness,and invisibility of MarkINeRV through multiple video datasets.The results demonstrate its efficacy in extracting watermarking information for copyright protection of NeRV.MarkINeRV represents a pioneering investigation into copyright issues surrounding NeRV. 展开更多
关键词 Invertible neural network neural representations for videos WATERMARKING ROBUSTNESS
下载PDF
HCRVD: A Vulnerability Detection System Based on CST-PDG Hierarchical Code Representation Learning
15
作者 Zhihui Song Jinchen Xu +1 位作者 Kewei Li Zheng Shan 《Computers, Materials & Continua》 SCIE EI 2024年第6期4573-4601,共29页
Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representation... Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality. 展开更多
关键词 Vulnerability detection deep learning CST-PDG code representation tree-graph-gated-attention network CROSS-LANGUAGE
下载PDF
Systematic Method for Constructing Lewis Representations
16
作者 Lahbib Abbas Lahcen Bih +3 位作者 Khalid Yamni Abderrahim Elyahyaouy Abdelmalik El Attaoui Zahra Ramzi 《Open Journal of Inorganic Chemistry》 2024年第1期1-18,共18页
The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bon... The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bond. Using a number of rules in a defined order, it is often better suited to complicated cases than the Lewis representation of atoms. This method allows us to determine the formal charge and oxidation number of each atom in the edifice more efficiently than other methods. 展开更多
关键词 Systematic Method Lewis representation Chemical Bond Formal Charge Oxidation Number
下载PDF
THE SPARSE REPRESENTATION RELATED WITH FRACTIONAL HEAT EQUATIONS
17
作者 曲伟 钱涛 +1 位作者 梁应德 李澎涛 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期567-582,共16页
This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an... This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions. 展开更多
关键词 reproducing kernel Hilbert space DICTIONARY sparse representation approximation to the identity fractional heat equations
下载PDF
Examining Zhang Peiji’s Translation of Beiying:A Study on the Representation of Zhu Ziqing’s Linguistic Style
18
作者 Chen Liang Kou Zeyu Lu Silin 《Contemporary Social Sciences》 2024年第4期143-155,共13页
Based on Yan Fu’s translation norms of“faithfulness,expressiveness,and elegance”and Liu Miqing’s concept of aesthetic representation in translation,the present study employed a combined method of qualitative and q... Based on Yan Fu’s translation norms of“faithfulness,expressiveness,and elegance”and Liu Miqing’s concept of aesthetic representation in translation,the present study employed a combined method of qualitative and quantitative analysis to investigate the linguistic styles employed by Zhu Ziqing in his renowned prose Beiying.Then,using relevant corpora and self-designed Python software,we investigated whether Zhang Peiji,as a translator,has successfully reproduced the simplistic,emotional,and realistic linguistic characteristics in Zhu Ziqing’s prose from the perspectives of“faithfulness,expressiveness,and elegance.”The findings of the research indicate that by employing a dynamic imitative translation approach,Zhang Peiji has successfully enhanced the linguistic aesthetic qualities of the source text,striving to reflect the distinctive linguistic style of Zhu Ziqing. 展开更多
关键词 Beiying Zhu Ziqing representation of linguistic style
下载PDF
A Disturbance Localization Method for Power System Based on Group Sparse Representation and Entropy Weight Method
19
作者 Zeyi Wang Mingxi Jiao +4 位作者 Daliang Wang Minxu Liu Minglei Jiang He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第8期2275-2291,共17页
This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sp... This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance. 展开更多
关键词 Disturbance location compressed sensing group sparse representation entropy power method GOMP algorithm
下载PDF
A Privacy Preservation Method for Attributed Social Network Based on Negative Representation of Information
20
作者 Hao Jiang Yuerong Liao +2 位作者 Dongdong Zhao Wenjian Luo Xingyi Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1045-1075,共31页
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc... Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components. 展开更多
关键词 Attributed social network topology privacy node attribute privacy negative representation of information negative survey negative database
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部