The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between...Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.展开更多
Planar Bragg reflector operating in the sub-terahertz wavelength installed at the upstream end of a sheet beam back- ward wave oscillator (BWO) is very promising to minimize the whole circuit structure and make it m...Planar Bragg reflector operating in the sub-terahertz wavelength installed at the upstream end of a sheet beam back- ward wave oscillator (BWO) is very promising to minimize the whole circuit structure and make it more compact. In this paper, a sub-terahertz wavelength (0.18-0.22 THz) tunable planar Bragg reflector is numerically analyzed by using multi-mode coupling theory (MCT). The operating mode TE10 and dominant coupling mode TE01 are mainly considered in this theory. Reflection and transmission performance of the reflector are demonstrated in detail and the results, in excellent agreement with the theoretical analysis and simulation, are also presented in this paper. Self- and cross-coupling coefficients between these two modes are presented as well. The reflector behaviors with different Bragg dimensions are discussed and analyzed in the 0.16-0.22 THz range. The analysis in this paper can be of benefit to the design and fabrication of the whole BWO circuit.展开更多
Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or...Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.展开更多
This paper introduces the design and applications of integrated As2S3 sidewall Bragg gratings on LiNbO3 substrate. The grating reflectance and bandwidth are analyzed with coupled-mode theory. Coupling coefficients are...This paper introduces the design and applications of integrated As2S3 sidewall Bragg gratings on LiNbO3 substrate. The grating reflectance and bandwidth are analyzed with coupled-mode theory. Coupling coefficients are computed by taking overlap integration. Numerical results for uniform gratings, phase-shifted gratings and grating cavities as well as electro-optic tunable gratings are presented. These integrated As2S3 sidewall gratings on LiNbO3 substrate provide an approach to the design of a wide range of integrated optical devices including switches, laser cavities, modulators, sensors and tunable filters.展开更多
A modified multiwavelength actively mode-locked fiber ring laser is proposed and experimentally demonstrated. In this kind of laser, stable multiwavelengths lasing is achieved by integrating cascaded sampled fiber Bra...A modified multiwavelength actively mode-locked fiber ring laser is proposed and experimentally demonstrated. In this kind of laser, stable multiwavelengths lasing is achieved by integrating cascaded sampled fiber Bragg gratings(SFBGs) into the laser cavity. To implement actively mode-locking technique, a double-ring cavity configuration is used to assure that the cavity lengths for all wavelengths lasing are identical. Thus, simultaneous mode locking of all wavelengths has been successfully achieved by using the same mode-locking signal.展开更多
This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with high...This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%.展开更多
The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental ...The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.展开更多
A double-exposure fabrication method without any intensity shadow mask to fabricate arbitrarily apodized fiber Bragg gratings( FBGs) with narrow bandwidth is demonstrated by controlling the total ultra violet (UV)...A double-exposure fabrication method without any intensity shadow mask to fabricate arbitrarily apodized fiber Bragg gratings( FBGs) with narrow bandwidth is demonstrated by controlling the total ultra violet (UV) irradiation along the grating by varying the speed of a translation stage. The UV source used is a stable continuous intracavity frequency-doubled argonion laser. The parameters (such as length, apodization profile, average index change)of FBGs can be easily changed with this method. The total UV irradiation is kept constant in the doubleexposure process because of the precise control of the exposure time, which ensures that the apodized FBG's bandwidth can be extremely narrow. The full width at half maximum (FWHM) bandwidth of the 2-cm-long apodized FBG fabricated by this method is 0. 15 nm with a maximum reflectivity of more than 95%.展开更多
The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-con...The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment.展开更多
By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser be...By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.展开更多
In this presentation the feasibility and capability of fiber Bragg gratings (FBG) employed in bridge health monitoring are demonstrated on a real bridge. FBG' s wavelength shift depending on strain variance has bee...In this presentation the feasibility and capability of fiber Bragg gratings (FBG) employed in bridge health monitoring are demonstrated on a real bridge. FBG' s wavelength shift depending on strain variance has been tested. The technique of FBG installation on bridges has been developed. 12 FBG strain sensors and 3 temperature sensors have been successfully embedded in the prestressed concrete box girder during the construction of Heilongjiang Hulan River Bridge. The prestressing tension process and quasi-static loading process of the girder were monitored with those sensors before it was installed onto the bridge. After the bridge was completed, the FBG sensors embedded have been utilized to monitor the strain shift of the beam under quasi-static load, traffic load and temperature. The results show that the traffic fluxes, possible tatigue damage and deflection of the bridge can be revealed conveniently through strain measurements with these FBG sensors, which provide key information for structural health diagnosis. The fact that the FBG strain sensors have withstood the ordeal of harsh construction process and lasted for more than one year proves that their durability and stability can satisfy the requirements for bridge health monitoring. It is also shown that the FBG strain sensor is more adaptive to long-term structural health monitoring than the electric resistance strain gauge.展开更多
In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key elemen...In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key element as the FBG opens up wide opportunities for the creation of next generation fiber lasers and sensors based on MCFs.The advantages of the technology are shown by using the examples of 3D shape sensors,acoustic emission sensors with spatially multiplexed channels,as well as multicore fiber Raman lasers.展开更多
Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical wa...Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.展开更多
Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficul...Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficult to achieve systemichemodynamic monitoring with the daily use of current devices due to the lack of multichannel and time-synchronized operationcapability over the whole body.Here,we utilize a soft microfiber Bragg grating group to monitor spatiotemporalhemodynamics by taking advantage of the high sensitivity,electromagnetic immunity,and great temporal synchronizationbetween multiple remote sensor nodes.A continuous systemic hemodynamic measurement technique is developedusing all-mechanical physiological signals,such as ballistocardiogram signals and pulse waves,to illustrate the actualmechanical process of blood circulation.Multiple hemodynamic parameters,such as systemic pulse transit time,heartrate,blood pressure,and peripheral resistance,are monitored using skin-like microfiber Bragg grating patches conformallyattached at different body locations.Relying on the soft microfiber Bragg grating group,the spatiotemporal hemodynamicmonitoring technique opens up new possibilities in clinical medical diagnosis and daily health management.展开更多
The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolym...The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolymer. Diffraction efficiency of a single grating is up to 78% in Bragg's condition, then a two-dimensional non-spatial filter, which consists of two volume Bragg gratings and a half-wave plate, enables the laser beam filtered in two dimensions with the diffraction efficiency of 54%. The Bragg's condition and effect of polarisation on performances of the two-dimension filter are also discussed.展开更多
This paper reports fiber Bragg gratings (FBGs) inscribed in a small-core Ge-doped photonic crystal fibers with a UV laser and a Talbot interferometer. The responses of such FBGs to temper- ature, strain, bending, an...This paper reports fiber Bragg gratings (FBGs) inscribed in a small-core Ge-doped photonic crystal fibers with a UV laser and a Talbot interferometer. The responses of such FBGs to temper- ature, strain, bending, and transverse-loading were systematically investigated. The Bragg wavelength of the FBGs shifts toward longer wavelengths with increasing temperature, tensile strain, and transverse-loading. The bending and transverse- loading properties of the FBGs are sensitive to the fiber orientations.展开更多
To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO2-...To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO2-doped core are proposed.The fundamental mode field, effective mode index, and confinement loss of NBF with 50 nm–7 μm-diameter hollow and filled nano-bore are numerically investigated by the finite element method.The reflected spectra of FBGs in NBFs are obtained by the transmission matrix method.The hollow FBGs in NBFs can be acheived with ~5% power fraction in the bore and the ~0.9 reflectivity when bore diameter is less than 3 μm.The filled FBGs can be realized with^1% power fraction and 0.98 reflectivity with different fillings including o-xylene, trichloroethylene, and chloroform for 800-nm bore diameter.The feasibility of the index sensing by our proposed NBF FBG is also analyzed and discussed.The experimental fabrication of hollow and filled FBGs are discussed and can be achieved by current techniques.The aim of this work is to establish a principle prototype for investigating the HCFs and solid-core FBGs-based fiber-optic platforms,which are useful for applications such as the simultaneous chemical and physical sensing at the same position.展开更多
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022)。
文摘Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.
基金supported by the National Natural Science Foundation of China(Grant No.G0501040161101040)
文摘Planar Bragg reflector operating in the sub-terahertz wavelength installed at the upstream end of a sheet beam back- ward wave oscillator (BWO) is very promising to minimize the whole circuit structure and make it more compact. In this paper, a sub-terahertz wavelength (0.18-0.22 THz) tunable planar Bragg reflector is numerically analyzed by using multi-mode coupling theory (MCT). The operating mode TE10 and dominant coupling mode TE01 are mainly considered in this theory. Reflection and transmission performance of the reflector are demonstrated in detail and the results, in excellent agreement with the theoretical analysis and simulation, are also presented in this paper. Self- and cross-coupling coefficients between these two modes are presented as well. The reflector behaviors with different Bragg dimensions are discussed and analyzed in the 0.16-0.22 THz range. The analysis in this paper can be of benefit to the design and fabrication of the whole BWO circuit.
基金supported by the ZTE Industry-University-Institute Fund Project under Grant No.IA20221202011。
文摘Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.
文摘This paper introduces the design and applications of integrated As2S3 sidewall Bragg gratings on LiNbO3 substrate. The grating reflectance and bandwidth are analyzed with coupled-mode theory. Coupling coefficients are computed by taking overlap integration. Numerical results for uniform gratings, phase-shifted gratings and grating cavities as well as electro-optic tunable gratings are presented. These integrated As2S3 sidewall gratings on LiNbO3 substrate provide an approach to the design of a wide range of integrated optical devices including switches, laser cavities, modulators, sensors and tunable filters.
文摘A modified multiwavelength actively mode-locked fiber ring laser is proposed and experimentally demonstrated. In this kind of laser, stable multiwavelengths lasing is achieved by integrating cascaded sampled fiber Bragg gratings(SFBGs) into the laser cavity. To implement actively mode-locking technique, a double-ring cavity configuration is used to assure that the cavity lengths for all wavelengths lasing are identical. Thus, simultaneous mode locking of all wavelengths has been successfully achieved by using the same mode-locking signal.
基金the financial support from Zhuzhou Times New Material Technology Co.LtD.(Grant No.XCFDJS-2022-00004495)Chilean National Agency for Research and Development(Basal FB0008).
文摘This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%.
文摘The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.
基金The Natural Science Foundation of Jiangsu Province(No.BK2004207)
文摘A double-exposure fabrication method without any intensity shadow mask to fabricate arbitrarily apodized fiber Bragg gratings( FBGs) with narrow bandwidth is demonstrated by controlling the total ultra violet (UV) irradiation along the grating by varying the speed of a translation stage. The UV source used is a stable continuous intracavity frequency-doubled argonion laser. The parameters (such as length, apodization profile, average index change)of FBGs can be easily changed with this method. The total UV irradiation is kept constant in the doubleexposure process because of the precise control of the exposure time, which ensures that the apodized FBG's bandwidth can be extremely narrow. The full width at half maximum (FWHM) bandwidth of the 2-cm-long apodized FBG fabricated by this method is 0. 15 nm with a maximum reflectivity of more than 95%.
基金Project supported by the National Natural Science Foundation of China(Grant No.61007040)
文摘The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474257 and 61605183
文摘By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 10402010).
文摘In this presentation the feasibility and capability of fiber Bragg gratings (FBG) employed in bridge health monitoring are demonstrated on a real bridge. FBG' s wavelength shift depending on strain variance has been tested. The technique of FBG installation on bridges has been developed. 12 FBG strain sensors and 3 temperature sensors have been successfully embedded in the prestressed concrete box girder during the construction of Heilongjiang Hulan River Bridge. The prestressing tension process and quasi-static loading process of the girder were monitored with those sensors before it was installed onto the bridge. After the bridge was completed, the FBG sensors embedded have been utilized to monitor the strain shift of the beam under quasi-static load, traffic load and temperature. The results show that the traffic fluxes, possible tatigue damage and deflection of the bridge can be revealed conveniently through strain measurements with these FBG sensors, which provide key information for structural health diagnosis. The fact that the FBG strain sensors have withstood the ordeal of harsh construction process and lasted for more than one year proves that their durability and stability can satisfy the requirements for bridge health monitoring. It is also shown that the FBG strain sensor is more adaptive to long-term structural health monitoring than the electric resistance strain gauge.
基金supported by the Russian Ministry of Science and Higher Education (14.Y26.31.0017)Russian Foundation for Basic Research(18-52-7822)the work concerning MCF fiber Raman lasers was supported by Russian Science Foundation (21-72-30024)
文摘In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key element as the FBG opens up wide opportunities for the creation of next generation fiber lasers and sensors based on MCFs.The advantages of the technology are shown by using the examples of 3D shape sensors,acoustic emission sensors with spatially multiplexed channels,as well as multicore fiber Raman lasers.
基金supported by the National Natural Science Foundation of China under Grant No. 60671027the Application Basis Research Foundation of Sichuan Province under Grant No. 07JY029-089.
文摘Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.
基金supported by the National Key R&D Program of China(2021YFA1401103)the National Natural Science Foundation of China(61925502 and 51772145).
文摘Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficult to achieve systemichemodynamic monitoring with the daily use of current devices due to the lack of multichannel and time-synchronized operationcapability over the whole body.Here,we utilize a soft microfiber Bragg grating group to monitor spatiotemporalhemodynamics by taking advantage of the high sensitivity,electromagnetic immunity,and great temporal synchronizationbetween multiple remote sensor nodes.A continuous systemic hemodynamic measurement technique is developedusing all-mechanical physiological signals,such as ballistocardiogram signals and pulse waves,to illustrate the actualmechanical process of blood circulation.Multiple hemodynamic parameters,such as systemic pulse transit time,heartrate,blood pressure,and peripheral resistance,are monitored using skin-like microfiber Bragg grating patches conformallyattached at different body locations.Relying on the soft microfiber Bragg grating group,the spatiotemporal hemodynamicmonitoring technique opens up new possibilities in clinical medical diagnosis and daily health management.
基金supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) (Grant No. 10676038)
文摘The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolymer. Diffraction efficiency of a single grating is up to 78% in Bragg's condition, then a two-dimensional non-spatial filter, which consists of two volume Bragg gratings and a half-wave plate, enables the laser beam filtered in two dimensions with the diffraction efficiency of 54%. The Bragg's condition and effect of polarisation on performances of the two-dimension filter are also discussed.
基金supported by the Alexander von Humboldt Foundation, the National Science Foundation of China under Grant No. 60507013, and the Thuringian Ministry of Education and Cultural Affairs.
文摘This paper reports fiber Bragg gratings (FBGs) inscribed in a small-core Ge-doped photonic crystal fibers with a UV laser and a Talbot interferometer. The responses of such FBGs to temper- ature, strain, bending, and transverse-loading were systematically investigated. The Bragg wavelength of the FBGs shifts toward longer wavelengths with increasing temperature, tensile strain, and transverse-loading. The bending and transverse- loading properties of the FBGs are sensitive to the fiber orientations.
基金Project supported by the Beijing Natural Science Foundation,China(Grant No.4192047)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2018JBM070 and 2018JBM065)the National Natural Science Foundation of China(Grant No.61675019)
文摘To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO2-doped core are proposed.The fundamental mode field, effective mode index, and confinement loss of NBF with 50 nm–7 μm-diameter hollow and filled nano-bore are numerically investigated by the finite element method.The reflected spectra of FBGs in NBFs are obtained by the transmission matrix method.The hollow FBGs in NBFs can be acheived with ~5% power fraction in the bore and the ~0.9 reflectivity when bore diameter is less than 3 μm.The filled FBGs can be realized with^1% power fraction and 0.98 reflectivity with different fillings including o-xylene, trichloroethylene, and chloroform for 800-nm bore diameter.The feasibility of the index sensing by our proposed NBF FBG is also analyzed and discussed.The experimental fabrication of hollow and filled FBGs are discussed and can be achieved by current techniques.The aim of this work is to establish a principle prototype for investigating the HCFs and solid-core FBGs-based fiber-optic platforms,which are useful for applications such as the simultaneous chemical and physical sensing at the same position.