A switchable terahertz(THz)polarization converter based on vanadium dioxide(VO_(2)) metamaterial is proposed.It is a 5-layer structure which containing metal split-ring-resonator(SRR),the first polyimide(PI)spacer,VO_...A switchable terahertz(THz)polarization converter based on vanadium dioxide(VO_(2)) metamaterial is proposed.It is a 5-layer structure which containing metal split-ring-resonator(SRR),the first polyimide(PI)spacer,VO_(2) film,the second PI spacer,and metal grating.It is an array structure and the period in x and y directions is 100μm.The performance is simulated by using finite integration technology.The simulation results show that,when the VO_(2) is in insulating state,the device is a transmission polarization converter.The cross-linear polarization conversion can be realized in a broadband of0.70 THz,and the polarization conversion rate(PCR)is higher than 99%.Under thermal stimulus,the VO_(2) changes from insulating state to metallic state,and the device is a reflective polarization converter.The linear-to-circular polarization conversion can be successfully realized in a broadband of 0.50 THz,and the PCR is higher than 88%.展开更多
A hybrid metamaterial with the integration of molybdenum disulfide(MoS_(2))overlayer is proposed to manipulate the terahertz(THz)wave.The simulated results indicate that the introduction of MoS_(2) layer could signifi...A hybrid metamaterial with the integration of molybdenum disulfide(MoS_(2))overlayer is proposed to manipulate the terahertz(THz)wave.The simulated results indicate that the introduction of MoS_(2) layer could significantly modify the resonant responses with large resonance red-shift and bandwidth broadening due to the depolarization field effect,especially for the structure on the small permitivity substrate.Additionally,the wide-band modulator in off-resonant region and a switch effect at resonance can be achieved by varying the conductivity of MoS_(2) layer.Further theoretical calculations based on the Lorentz coupling model are consistent with the simulated results,explicating the response behaviors originate from the coupling between MoS_(2) overlayer and the metastructure.Our results could provide a possibility for active control THz modulator and switchable device based on the MoS_(2) overlayer and advance the understanding of the coupling mechanism in hybrid structures.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62065005,61565004,11774288,and 62003107)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant Nos.2018GXNSFAA050043,2020GXNSFDA238019,2019JJB110033,and 2017GXNSFBA198029)+2 种基金the Innovation Project of Guangxi Graduate Education,China(Grant Nos.YCSW2021188,YCBZ2021071,and 2020YCXB04)the Foundation from Guangxi Key Laboratory of Automatic Detecting Technology and Instrument(Grant No.YQ21101)the Research and Development Project in Hunan Province,China(Grant No.2020SK2111)。
文摘A switchable terahertz(THz)polarization converter based on vanadium dioxide(VO_(2)) metamaterial is proposed.It is a 5-layer structure which containing metal split-ring-resonator(SRR),the first polyimide(PI)spacer,VO_(2) film,the second PI spacer,and metal grating.It is an array structure and the period in x and y directions is 100μm.The performance is simulated by using finite integration technology.The simulation results show that,when the VO_(2) is in insulating state,the device is a transmission polarization converter.The cross-linear polarization conversion can be realized in a broadband of0.70 THz,and the polarization conversion rate(PCR)is higher than 99%.Under thermal stimulus,the VO_(2) changes from insulating state to metallic state,and the device is a reflective polarization converter.The linear-to-circular polarization conversion can be successfully realized in a broadband of 0.50 THz,and the PCR is higher than 88%.
基金Beijing Natural Science Foundation of China(Grant No.4181001)the National Natural Science Foundation of China(Grant Nos.62075142 and 61875140).
文摘A hybrid metamaterial with the integration of molybdenum disulfide(MoS_(2))overlayer is proposed to manipulate the terahertz(THz)wave.The simulated results indicate that the introduction of MoS_(2) layer could significantly modify the resonant responses with large resonance red-shift and bandwidth broadening due to the depolarization field effect,especially for the structure on the small permitivity substrate.Additionally,the wide-band modulator in off-resonant region and a switch effect at resonance can be achieved by varying the conductivity of MoS_(2) layer.Further theoretical calculations based on the Lorentz coupling model are consistent with the simulated results,explicating the response behaviors originate from the coupling between MoS_(2) overlayer and the metastructure.Our results could provide a possibility for active control THz modulator and switchable device based on the MoS_(2) overlayer and advance the understanding of the coupling mechanism in hybrid structures.