A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequenc...A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequency con-verter is obtained with low switching frequency converter. It is very promising in current-source APF that adopt super-conducting magnetic energy storage component.展开更多
Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link a...Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link and magnetic integration feature has been proposed,which can reduce the system volume and thus increase the power density.However,the magnetic integration also introduces strong coupling between the line frequency(LF)and MF variables,which poses a great challenge on modeling and control issues.This paper proposes a modeling and control method for an SST with magnetic integration and mixed-frequency modulation.A mathematical model based on dual d-q references is deduced,and then a cascaded control system is designed according to the model.Parameters of the controller for the variables at one frequency are properly designed to avoid disturbance from the variables at the other frequency.The simulation and experimental results show good decoupling effect and satisfactory dynamics performance of the proposed control system.展开更多
基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统...基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统易发生振荡失稳现象。首先,建立了直驱风电场经MMC-HVDC并网送端系统的小扰动线性化模型,分析了风场有功输出对系统稳定性的影响。然后,建立了MMC及风机并网变流器交流侧dq阻抗模型,从阻抗角度揭示了送端系统振荡失稳机理。进一步,提出了基于MMC交流电压控制外环q轴附加阻尼的振荡抑制策略,可满足系统满功率范围内的运行稳定性要求。最后,基于全比例模型的仿真结果验证了所提振荡抑制策略的有效性。展开更多
The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is co...The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is coordinated to the used modules per phase when active power is transmitted prior to reactive power, so that the energy is fed back to the AC power grid connected to the converter station which uses the fixed dc voltage controller. In addition, in view of the different forms connected to the grid, specifically when the converter station supplies power for passive network, the passive converter station can take a certain auxiliary trigger strategy to make its maximum energy feedback to the grid. Finally, a simulation system of the MMC-HVDC system is constructed in Matlab/Simulink environment, and simulation results show that the proposed stop strategies are effective.展开更多
该文提出一种基于波动功率解耦的模块化多电平换流器(ripple-power decoupling based modular multilevel converter,RPD-MMC)电机调速系统,通过半桥与变压器结构的高频链将子模块(submodule,SM)隔离后进行横向互联,实现三相波动功率在S...该文提出一种基于波动功率解耦的模块化多电平换流器(ripple-power decoupling based modular multilevel converter,RPD-MMC)电机调速系统,通过半桥与变压器结构的高频链将子模块(submodule,SM)隔离后进行横向互联,实现三相波动功率在SM电容中的解耦,进而消除共模电压(common-mode voltage,CMV)低频波动分量;并提出一种脉冲优化控制CPS-SPWM(pulse optimization control CPS-SPWM,POC-CPS-SPWM)策略,控制任一时刻MMC三相的上、下桥臂导通SM个数保持一致,消除CMV高频波动分量,最终实现对CMV的完全消除。该文从CMV的机理与特性分析出发,分别对低频与高频抑制的方案提出、原理分析与效果实现进行探讨,最后通过仿真与实验,验证CMV机理分析与两种策略消除CMV的可行性与有效性。展开更多
文摘A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequency con-verter is obtained with low switching frequency converter. It is very promising in current-source APF that adopt super-conducting magnetic energy storage component.
基金the National Natural Science Foundation of China under Grant 51777085.
文摘Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link and magnetic integration feature has been proposed,which can reduce the system volume and thus increase the power density.However,the magnetic integration also introduces strong coupling between the line frequency(LF)and MF variables,which poses a great challenge on modeling and control issues.This paper proposes a modeling and control method for an SST with magnetic integration and mixed-frequency modulation.A mathematical model based on dual d-q references is deduced,and then a cascaded control system is designed according to the model.Parameters of the controller for the variables at one frequency are properly designed to avoid disturbance from the variables at the other frequency.The simulation and experimental results show good decoupling effect and satisfactory dynamics performance of the proposed control system.
文摘基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统易发生振荡失稳现象。首先,建立了直驱风电场经MMC-HVDC并网送端系统的小扰动线性化模型,分析了风场有功输出对系统稳定性的影响。然后,建立了MMC及风机并网变流器交流侧dq阻抗模型,从阻抗角度揭示了送端系统振荡失稳机理。进一步,提出了基于MMC交流电压控制外环q轴附加阻尼的振荡抑制策略,可满足系统满功率范围内的运行稳定性要求。最后,基于全比例模型的仿真结果验证了所提振荡抑制策略的有效性。
文摘The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is coordinated to the used modules per phase when active power is transmitted prior to reactive power, so that the energy is fed back to the AC power grid connected to the converter station which uses the fixed dc voltage controller. In addition, in view of the different forms connected to the grid, specifically when the converter station supplies power for passive network, the passive converter station can take a certain auxiliary trigger strategy to make its maximum energy feedback to the grid. Finally, a simulation system of the MMC-HVDC system is constructed in Matlab/Simulink environment, and simulation results show that the proposed stop strategies are effective.
文摘该文提出一种基于波动功率解耦的模块化多电平换流器(ripple-power decoupling based modular multilevel converter,RPD-MMC)电机调速系统,通过半桥与变压器结构的高频链将子模块(submodule,SM)隔离后进行横向互联,实现三相波动功率在SM电容中的解耦,进而消除共模电压(common-mode voltage,CMV)低频波动分量;并提出一种脉冲优化控制CPS-SPWM(pulse optimization control CPS-SPWM,POC-CPS-SPWM)策略,控制任一时刻MMC三相的上、下桥臂导通SM个数保持一致,消除CMV高频波动分量,最终实现对CMV的完全消除。该文从CMV的机理与特性分析出发,分别对低频与高频抑制的方案提出、原理分析与效果实现进行探讨,最后通过仿真与实验,验证CMV机理分析与两种策略消除CMV的可行性与有效性。