Different types of lightning air terminals have been designed over the years.Concern regarding the effect of different types of air terminals,especially the early streamer emission(ESE)-type,remains controversial.This...Different types of lightning air terminals have been designed over the years.Concern regarding the effect of different types of air terminals,especially the early streamer emission(ESE)-type,remains controversial.This paper describes the discharge characteristics of different types of air terminals,two of which are quite similar to the ESE-type dynasphere,and concludes that the tested non-standard air terminals have discharge characteristics similar to those of Franklin rods and that their lightning protection performance should be similar.展开更多
In order to obtain accurate conflict risks in terminal airspace design,the concept and calculation model of potential conflict frequency for intersected routes are proposed.Conflict frequency is represented by the pro...In order to obtain accurate conflict risks in terminal airspace design,the concept and calculation model of potential conflict frequency for intersected routes are proposed.Conflict frequency is represented by the product of horizontal conflict frequency and vertical conflict probability.The horizontal conflict frequency is derived from the probability density distribution of conflicts in a period of time.Based on the recorded radar trajectory data,the concept and model of ROUTE distance are proposed,and the probability density function of aircraft height at a specified ROUTE distance is deduced by kernel density estimation.Furthermore,vertical conflict probability and its horizontal distribution are achieved.Examples of three intersected arrival and departure route design schemes are studied.Compared with scheme 1,the conflict frequency values of the other two improved schemes decrease to53% and 24%,respectively.The results show that the model can quantify potential conflict frequency of intersected routes.展开更多
This paper outlines a multi-dimensional user-oriented performance metrics approach in evaluating the operation of the terminal airspace system to aid in the airport and airspace planning and decision making. Safety, d...This paper outlines a multi-dimensional user-oriented performance metrics approach in evaluating the operation of the terminal airspace system to aid in the airport and airspace planning and decision making. Safety, delay and predictability metrics contribute to the analytical framework. From the findings, the occurrence of air incidence has a high severity level at departure, and arrival phases of flight, higher likelihood at the radar room and much of the incidences were as a result of faulty equipment and inherent absence of modern airspace infrastructure. Also, in Lagos terminal airspace, the number of incidences has no close correlation with the level of traffic complexity. Total schedule arrival delay ranges from 1 - 392 minutes representing an average of 7.8 - 17.9 minutes per aircraft that arrived Lagos airport at that period. Be</span><span style="font-family:Verdana;">sides, the total approach contact time ranges from 1 - 57 minutes, translating to 4.6 - 7.1 minutes per aircraft. However, variability in arrival time of 1 - 5 minutes is common from published airline arrival scheduled time. In the same vein, the variability of 1 - 5 minutes is common from approach contact times of aircraft. These figures indicate sound arrival predictability signature for Lagos airport. Also, departure time variability above 30 mi</span><span style="font-family:Verdana;">nutes is familiar from the ATC clearance time for the various routes under study. However, there is about or more 25% variability of more than 15</span> <span style="font-family:Verdana;">minutes, and this indicates possible inconsistency of predicting departure times from the times Air Traffic Control</span><b> </b><span style="font-family:Verdana;">(ATC) clearance was acquired. Above all, the predictability of departure times in Lagos airport is weak compared to those of the arrival. Taken by it, this may be a sign of airspace congestion or ATC deficiencies at the Lagos airport. This is an indication of the lack of users’ confidence in Nigeria’s air transport industry to deliver just-in-time service.展开更多
Weather is a key factor affecting the control of air traffic.Accurate recognition and classification of similar weather scenes in the terminal area is helpful for rapid decision-making in air trafficflow management.Curren...Weather is a key factor affecting the control of air traffic.Accurate recognition and classification of similar weather scenes in the terminal area is helpful for rapid decision-making in air trafficflow management.Current researches mostly use traditional machine learning methods to extract features of weather scenes,and clustering algorithms to divide similar scenes.Inspired by the excellent performance of deep learning in image recognition,this paper proposes a terminal area similar weather scene classification method based on improved deep convolution embedded clustering(IDCEC),which uses the com-bination of the encoding layer and the decoding layer to reduce the dimensionality of the weather image,retaining useful information to the greatest extent,and then uses the combination of the pre-trained encoding layer and the clustering layer to train the clustering model of the similar scenes in the terminal area.Finally,term-inal area of Guangzhou Airport is selected as the research object,the method pro-posed in this article is used to classify historical weather data in similar scenes,and the performance is compared with other state-of-the-art methods.The experi-mental results show that the proposed IDCEC method can identify similar scenes more accurately based on the spatial distribution characteristics and severity of weather;at the same time,compared with the actualflight volume in the Guangz-hou terminal area,IDCEC's recognition results of similar weather scenes are con-sistent with the recognition of experts in thefield.展开更多
This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CF...This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CFD)simulation and their performance in case study.A full-scale experiment is performed in an environment chamber,and the measured air velocity and temperature fields are compared with the simulation results by using four ATD models.The velocity and temperature fields are measured by an omni-directional thermo-anemometer system.It demonstrates that the basic model and the box model are not applicable to complicated air terminal devices.At the occupant area,the relative errors between simulated and measured air velocities are less than 20% based on the N-point momentum model and the jet main region specification model.Around the ATD zone,the relative error between the numerical and measured air velocity based on the jet main region specification model is less than 15%.The jet main region specification model is proved to be an applicable approach and a more accurate way to study the airflow pattern around the ATD with complicated geometry.展开更多
基金partly supported by National Natural Science Foundation of China(No.51577098)the State Grid Corporation of China,and China Southern Power Grid
文摘Different types of lightning air terminals have been designed over the years.Concern regarding the effect of different types of air terminals,especially the early streamer emission(ESE)-type,remains controversial.This paper describes the discharge characteristics of different types of air terminals,two of which are quite similar to the ESE-type dynasphere,and concludes that the tested non-standard air terminals have discharge characteristics similar to those of Franklin rods and that their lightning protection performance should be similar.
基金Supported by the National Natural Science Foundation of China(61039001)the State Technology Supporting Plan(2011BAH24B08)
文摘In order to obtain accurate conflict risks in terminal airspace design,the concept and calculation model of potential conflict frequency for intersected routes are proposed.Conflict frequency is represented by the product of horizontal conflict frequency and vertical conflict probability.The horizontal conflict frequency is derived from the probability density distribution of conflicts in a period of time.Based on the recorded radar trajectory data,the concept and model of ROUTE distance are proposed,and the probability density function of aircraft height at a specified ROUTE distance is deduced by kernel density estimation.Furthermore,vertical conflict probability and its horizontal distribution are achieved.Examples of three intersected arrival and departure route design schemes are studied.Compared with scheme 1,the conflict frequency values of the other two improved schemes decrease to53% and 24%,respectively.The results show that the model can quantify potential conflict frequency of intersected routes.
文摘This paper outlines a multi-dimensional user-oriented performance metrics approach in evaluating the operation of the terminal airspace system to aid in the airport and airspace planning and decision making. Safety, delay and predictability metrics contribute to the analytical framework. From the findings, the occurrence of air incidence has a high severity level at departure, and arrival phases of flight, higher likelihood at the radar room and much of the incidences were as a result of faulty equipment and inherent absence of modern airspace infrastructure. Also, in Lagos terminal airspace, the number of incidences has no close correlation with the level of traffic complexity. Total schedule arrival delay ranges from 1 - 392 minutes representing an average of 7.8 - 17.9 minutes per aircraft that arrived Lagos airport at that period. Be</span><span style="font-family:Verdana;">sides, the total approach contact time ranges from 1 - 57 minutes, translating to 4.6 - 7.1 minutes per aircraft. However, variability in arrival time of 1 - 5 minutes is common from published airline arrival scheduled time. In the same vein, the variability of 1 - 5 minutes is common from approach contact times of aircraft. These figures indicate sound arrival predictability signature for Lagos airport. Also, departure time variability above 30 mi</span><span style="font-family:Verdana;">nutes is familiar from the ATC clearance time for the various routes under study. However, there is about or more 25% variability of more than 15</span> <span style="font-family:Verdana;">minutes, and this indicates possible inconsistency of predicting departure times from the times Air Traffic Control</span><b> </b><span style="font-family:Verdana;">(ATC) clearance was acquired. Above all, the predictability of departure times in Lagos airport is weak compared to those of the arrival. Taken by it, this may be a sign of airspace congestion or ATC deficiencies at the Lagos airport. This is an indication of the lack of users’ confidence in Nigeria’s air transport industry to deliver just-in-time service.
基金supported by the Fundamental Research Funds for the CentralUniversities under Grant NS2020045. Y.L.G received the grant.
文摘Weather is a key factor affecting the control of air traffic.Accurate recognition and classification of similar weather scenes in the terminal area is helpful for rapid decision-making in air trafficflow management.Current researches mostly use traditional machine learning methods to extract features of weather scenes,and clustering algorithms to divide similar scenes.Inspired by the excellent performance of deep learning in image recognition,this paper proposes a terminal area similar weather scene classification method based on improved deep convolution embedded clustering(IDCEC),which uses the com-bination of the encoding layer and the decoding layer to reduce the dimensionality of the weather image,retaining useful information to the greatest extent,and then uses the combination of the pre-trained encoding layer and the clustering layer to train the clustering model of the similar scenes in the terminal area.Finally,term-inal area of Guangzhou Airport is selected as the research object,the method pro-posed in this article is used to classify historical weather data in similar scenes,and the performance is compared with other state-of-the-art methods.The experi-mental results show that the proposed IDCEC method can identify similar scenes more accurately based on the spatial distribution characteristics and severity of weather;at the same time,compared with the actualflight volume in the Guangz-hou terminal area,IDCEC's recognition results of similar weather scenes are con-sistent with the recognition of experts in thefield.
文摘This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CFD)simulation and their performance in case study.A full-scale experiment is performed in an environment chamber,and the measured air velocity and temperature fields are compared with the simulation results by using four ATD models.The velocity and temperature fields are measured by an omni-directional thermo-anemometer system.It demonstrates that the basic model and the box model are not applicable to complicated air terminal devices.At the occupant area,the relative errors between simulated and measured air velocities are less than 20% based on the N-point momentum model and the jet main region specification model.Around the ATD zone,the relative error between the numerical and measured air velocity based on the jet main region specification model is less than 15%.The jet main region specification model is proved to be an applicable approach and a more accurate way to study the airflow pattern around the ATD with complicated geometry.