This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ...This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms.展开更多
Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they prop...Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the ...During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the stochastic search strategies,the performance of most EAs deteriorates drastically when handling a large number of decision variables.To tackle the curse of dimensionality,this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with sparse optimal solutions.The proposed algorithm estimates the sparse distribution of optimal solutions by optimizing a binary vector for each solution,and provides a fast clustering method to highly reduce the dimensionality of the search space.More importantly,all the operations related to the decision variables only contain several matrix calculations,which can be directly accelerated by GPUs.While existing EAs are capable of handling fewer than 10000 real variables,the proposed algorithm is verified to be effective in handling 1000000 real variables.Furthermore,since the proposed algorithm handles the large number of variables via accelerated matrix calculations,its runtime can be reduced to less than 10%of the runtime of existing EAs.展开更多
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev...Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.展开更多
In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,...In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.展开更多
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-obj...Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA.展开更多
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl...Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods.展开更多
Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions ...Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists.展开更多
Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective...Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization(BESO).The conventional BESO is provided with constant evolutionary volume ratio(EVR),whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements.To address the issue,the modified BESO with variable EVR is introduced.To compromise the natural frequency and the dynamic stiffness,a weighting scheme of sensitivity numbers is employed to form the Pareto solution space.Several numerical examples demonstrate that the optimal solutions obtained from the modified BESO method have good agreement with those from the classic BESO method.Most importantly,the dynamic removal strategy with the variable EVR sharply springs up the optimization process.Therefore,it is concluded that the modified BESO method with variable EVR can solve structural design problems using multi-objective optimization.展开更多
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search an...Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.展开更多
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf...The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.展开更多
Selective logging is well-recognized as an effective practice in sustainable forest management.However,the ecological efficiency or resilience of the residual stand is often in doubt.Recovery time depends on operation...Selective logging is well-recognized as an effective practice in sustainable forest management.However,the ecological efficiency or resilience of the residual stand is often in doubt.Recovery time depends on operational variables,diversity,and forest structure.Selective logging is excellent but is open to changes.This may be resolved by mathematical programming and this study integrates the economic-ecological aspects in multi-objective function by applying two evolutionary algorithms.The function maximizes remaining stand diversity,merchantable logs,and the inverse of distance between trees for harvesting and log landings points.The Brazilian rainforest database(566 trees)was used to simulate our 216-ha model.The log landing design has a maximum volume limit of 500 m3.The nondominated sorting genetic algorithm was applied to solve the main optimization problem.In parallel,a sub-problem(p-facility allocation)was solved for landing allocation by a genetic algorithm.Pareto frontier analysis was applied to distinguish the gradientsα-economic,β-ecological,andγ-equilibrium.As expected,the solutions have high diameter changes in the residual stand(average removal of approximately 16 m^(3) ha^(-1)).All solutions showed a grouping of trees selected for harvesting,although there was no formation of large clearings(percentage of canopy removal<7%,with an average of 2.5 ind ha^(-1)).There were no differences in floristic composition by preferentially selecting species with greater frequency in the initial stand for harvesting.This implies a lower impact on the demographic rates of the remaining stand.The methodology should support projects of reduced impact logging by using spatial-diversity information to guide better practices in tropical forests.展开更多
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed...Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.展开更多
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes...Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.展开更多
This paper addresses evolutionary multi-objective portfolio optimization in the practical context by incorporating realistic constraints into the problem model and preference criterion into the optimization search pro...This paper addresses evolutionary multi-objective portfolio optimization in the practical context by incorporating realistic constraints into the problem model and preference criterion into the optimization search process. The former is essential to enhance the realism of the classical mean-variance model proposed by Harry Markowitz, since portfolio managers often face a number of realistic constraints arising from business and industry regulations, while the latter reflects the fact that portfolio managers are ultimately interested in specific regions or points along the efficient frontier during the actual execution of their investment orders. For the former, this paper proposes an order-based representation that can be easily extended to handle various realistic constraints like floor and ceiling constraints and cardinality constraint. An experimental study, based on benchmark problems obtained from the OR-library, demonstrates its capability to attain a better approximation of the efficient frontier in terms of proximity and diversity with respect to other conventional representations. The experimental results also illustrated its viability and practicality in handling the various realistic constraints. A simple strategy to incorporate preferences into the multi-objective optimization process is highlighted and the experimental study demonstrates its capability in driving the evolutionary search towards specific regions of the efficient frontier.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms a...Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs.展开更多
The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become...The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints.So far,little research has been carried out in this field.This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes.Three optimization objectives are considered simultaneously: maximum probability of average fault,maximum average importance,and minimum average complexity of test.Under the constraints of both known symptoms and the causal relationship among different components,a multi-objective optimization mathematical model is set up,taking minimizing cost of fault reasoning as the target function.Since the problem is non-deterministic polynomial-hard(NP-hard),a modified multi-objective ant colony algorithm is proposed,in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives.At last,a Pareto optimal set is acquired.Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set,through which the final fault causes can be identified according to decision-making demands,thus realize fault reasoning of the multi-constraint and multi-objective complex system.Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model,which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.展开更多
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms.
基金supported in part by the National Key Research and Development Program of China(2022YFD2001200)the National Natural Science Foundation of China(62176238,61976237,62206251,62106230)+3 种基金China Postdoctoral Science Foundation(2021T140616,2021M692920)the Natural Science Foundation of Henan Province(222300420088)the Program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT023)the Program for Science&Technology Innovation Teams in Universities of Henan Province(23IRTSTHN010).
文摘Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金This work was supported in part by the National Key Research and Development Program of China(2018AAA0100100)the National Natural Science Foundation of China(61822301,61876123,61906001)+2 种基金the Collaborative Innovation Program of Universities in Anhui Province(GXXT-2020-051)the Hong Kong Scholars Program(XJ2019035)Anhui Provincial Natural Science Foundation(1908085QF271).
文摘During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the stochastic search strategies,the performance of most EAs deteriorates drastically when handling a large number of decision variables.To tackle the curse of dimensionality,this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with sparse optimal solutions.The proposed algorithm estimates the sparse distribution of optimal solutions by optimizing a binary vector for each solution,and provides a fast clustering method to highly reduce the dimensionality of the search space.More importantly,all the operations related to the decision variables only contain several matrix calculations,which can be directly accelerated by GPUs.While existing EAs are capable of handling fewer than 10000 real variables,the proposed algorithm is verified to be effective in handling 1000000 real variables.Furthermore,since the proposed algorithm handles the large number of variables via accelerated matrix calculations,its runtime can be reduced to less than 10%of the runtime of existing EAs.
基金the National Natural Science Foundation of China(62076225,62073300)the Natural Science Foundation for Distinguished Young Scholars of Hubei(2019CFA081)。
文摘Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.
基金partly supported by the National Natural Science Foundation of China(62076225)。
文摘In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
基金supported in part by the National Natural Science Fund for Outstanding Young Scholars of China (61922072)the National Natural Science Foundation of China (62176238, 61806179, 61876169, 61976237)+2 种基金China Postdoctoral Science Foundation (2020M682347)the Training Program of Young Backbone Teachers in Colleges and Universities in Henan Province (2020GGJS006)Henan Provincial Young Talents Lifting Project (2021HYTP007)。
文摘Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA.
基金This research work is the Key R&D Program of Hubei Province under Grant No.2021AAB001National Natural Science Foundation of China under Grant No.U21B2029。
文摘Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods.
基金partially supported by the National Natural Science Foundation of China(41930644,61972439)the Collaborative Innovation Project of Anhui Province(GXXT-2022-093)the Key Program in the Youth Elite Support Plan in Universities of Anhui Province(gxyqZD2019010)。
文摘Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists.
基金funded by the National Natural Science Foundation of China(Grant No.51505096)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2020E064).
文摘Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization(BESO).The conventional BESO is provided with constant evolutionary volume ratio(EVR),whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements.To address the issue,the modified BESO with variable EVR is introduced.To compromise the natural frequency and the dynamic stiffness,a weighting scheme of sensitivity numbers is employed to form the Pareto solution space.Several numerical examples demonstrate that the optimal solutions obtained from the modified BESO method have good agreement with those from the classic BESO method.Most importantly,the dynamic removal strategy with the variable EVR sharply springs up the optimization process.Therefore,it is concluded that the modified BESO method with variable EVR can solve structural design problems using multi-objective optimization.
基金Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
文摘Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.
文摘The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.
基金supported by the Coordenacao de Aperfeicoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001the Postgraduate Programme in Forest Engineering of the Federal University of Lavras (PPGEF/UFLA)and Group of Optimization and Planning (GOPLAN/UFLA/LEMAF-Forest Management Research Lab)。
文摘Selective logging is well-recognized as an effective practice in sustainable forest management.However,the ecological efficiency or resilience of the residual stand is often in doubt.Recovery time depends on operational variables,diversity,and forest structure.Selective logging is excellent but is open to changes.This may be resolved by mathematical programming and this study integrates the economic-ecological aspects in multi-objective function by applying two evolutionary algorithms.The function maximizes remaining stand diversity,merchantable logs,and the inverse of distance between trees for harvesting and log landings points.The Brazilian rainforest database(566 trees)was used to simulate our 216-ha model.The log landing design has a maximum volume limit of 500 m3.The nondominated sorting genetic algorithm was applied to solve the main optimization problem.In parallel,a sub-problem(p-facility allocation)was solved for landing allocation by a genetic algorithm.Pareto frontier analysis was applied to distinguish the gradientsα-economic,β-ecological,andγ-equilibrium.As expected,the solutions have high diameter changes in the residual stand(average removal of approximately 16 m^(3) ha^(-1)).All solutions showed a grouping of trees selected for harvesting,although there was no formation of large clearings(percentage of canopy removal<7%,with an average of 2.5 ind ha^(-1)).There were no differences in floristic composition by preferentially selecting species with greater frequency in the initial stand for harvesting.This implies a lower impact on the demographic rates of the remaining stand.The methodology should support projects of reduced impact logging by using spatial-diversity information to guide better practices in tropical forests.
基金supported in part by the National Natural Science Foundation of China(61806051,61903078)Natural Science Foundation of Shanghai(20ZR1400400)+2 种基金Agricultural Project of the Shanghai Committee of Science and Technology(16391902800)the Fundamental Research Funds for the Central Universities(2232020D-48)the Project of the Humanities and Social Sciences on Young Fund of the Ministry of Education in China(Research on swarm intelligence collaborative robust optimization scheduling for high-dimensional dynamic decisionmaking system(20YJCZH052))。
文摘Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.
文摘Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.
文摘This paper addresses evolutionary multi-objective portfolio optimization in the practical context by incorporating realistic constraints into the problem model and preference criterion into the optimization search process. The former is essential to enhance the realism of the classical mean-variance model proposed by Harry Markowitz, since portfolio managers often face a number of realistic constraints arising from business and industry regulations, while the latter reflects the fact that portfolio managers are ultimately interested in specific regions or points along the efficient frontier during the actual execution of their investment orders. For the former, this paper proposes an order-based representation that can be easily extended to handle various realistic constraints like floor and ceiling constraints and cardinality constraint. An experimental study, based on benchmark problems obtained from the OR-library, demonstrates its capability to attain a better approximation of the efficient frontier in terms of proximity and diversity with respect to other conventional representations. The experimental results also illustrated its viability and practicality in handling the various realistic constraints. A simple strategy to incorporate preferences into the multi-objective optimization process is highlighted and the experimental study demonstrates its capability in driving the evolutionary search towards specific regions of the efficient frontier.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金supported in part by the National Key Research and Development Program of China(2018AAA0100100)the National Natural Science Foundation of China(61906001,62136008,U21A20512)+1 种基金the Key Program of Natural Science Project of Educational Commission of Anhui Province(KJ2020A0036)Alexander von Humboldt Professorship for Artificial Intelligence Funded by the Federal Ministry of Education and Research,Germany。
文摘Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs.
基金supported by Sub-project of Key National Science and Technology Special Project of China(Grant No.2011ZX05056)
文摘The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints.So far,little research has been carried out in this field.This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes.Three optimization objectives are considered simultaneously: maximum probability of average fault,maximum average importance,and minimum average complexity of test.Under the constraints of both known symptoms and the causal relationship among different components,a multi-objective optimization mathematical model is set up,taking minimizing cost of fault reasoning as the target function.Since the problem is non-deterministic polynomial-hard(NP-hard),a modified multi-objective ant colony algorithm is proposed,in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives.At last,a Pareto optimal set is acquired.Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set,through which the final fault causes can be identified according to decision-making demands,thus realize fault reasoning of the multi-constraint and multi-objective complex system.Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model,which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.