期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MOALG: A Metaheuristic Hybrid of Multi-Objective Ant Lion Optimizer and Genetic Algorithm for Solving Design Problems
1
作者 Rashmi Sharma Ashok Pal +4 位作者 Nitin Mittal Lalit Kumar Sreypov Van Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2024年第3期3489-3510,共22页
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ... This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms. 展开更多
关键词 multi-objective optimization genetic algorithm ant lion optimizer METAHEURISTIC
下载PDF
基于多目标蚁狮算法的Stewart平台优化设计
2
作者 史晓娟 王磊 +1 位作者 姚兵 程森林 《现代雷达》 2024年第11期79-84,共6页
针对Stewart平台传统结构优化设计中,存在的设计过程低效、优化方案不全面以及优化结果不直观等问题,在深入分析Stewart平台运动特性的基础上,建立平台的运动学方程,并通过仿真技术求解出平台的可达工作空间以及灵活工作空间。文中将多... 针对Stewart平台传统结构优化设计中,存在的设计过程低效、优化方案不全面以及优化结果不直观等问题,在深入分析Stewart平台运动特性的基础上,建立平台的运动学方程,并通过仿真技术求解出平台的可达工作空间以及灵活工作空间。文中将多目标蚁狮(MOALO)算法应用于Stewart平台的结构优化设计,以雅可比矩阵条件数以及可用操作度为优化目标,通过仿真软件得到多组优化解,即帕雷托优化解集;以用作运动模拟器的Stewart平台为例进行具体的优化设计分析,通过对灵活工作空间体积占比的求解,验证了该算法的有效性和可行性。在Stewart平台的结构优化设计中,MOALO算法相较进化遗传算法、多目标粒子群算法等,在多目标优化问题上具有更好的收敛性和覆盖性,更符合实际多目标优化工程设计。 展开更多
关键词 Stewart平台 运动学方程 结构优化 多目标蚁狮算法 工作空间
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部