期刊文献+
共找到455篇文章
< 1 2 23 >
每页显示 20 50 100
Community detection on elite mathematicians’collaboration network
1
作者 Yurui Huang Zimo Wang +1 位作者 Chaolin Tian Yifang Ma 《Journal of Data and Information Science》 CSCD 2024年第4期1-23,共23页
Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the fie... Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the field of mathematics.Design/methodology/approach:Two community detection algorithms,namely Greedy Modularity Maximization and Infomap,are utilized to examine collaboration patterns among mathematicians.We conduct a comparative analysis of mathematicians’centrality,emphasizing the influence of award-winning individuals in connecting network roles such as Betweenness,Closeness,and Harmonic centrality.Additionally,we investigate the distribution of elite mathematicians across communities and their relationships within different mathematical sub-fields.Findings:The study identifies the substantial influence exerted by award-winning mathematicians in connecting network roles.The elite distribution across the network is uneven,with a concentration within specific communities rather than being evenly dispersed.Secondly,the research identifies a positive correlation between distinct mathematical sub-fields and the communities,indicating collaborative tendencies among scientists engaged in related domains.Lastly,the study suggests that reduced research diversity within a community might lead to a higher concentration of elite scientists within that specific community.Research limitations:The study’s limitations include its narrow focus on mathematicians,which may limit the applicability of the findings to broader scientific fields.Issues with manually collected data affect the reliability of conclusions about collaborative networks.Practical implications:This study offers valuable insights into how elite mathematicians collaborate and how knowledge is disseminated within mathematical circles.Understanding these collaborative behaviors could aid in fostering better collaboration strategies among mathematicians and institutions,potentially enhancing scientific progress in mathematics.Originality/value:The study adds value to understanding collaborative dynamics within the realm of mathematics,offering a unique angle for further exploration and research. 展开更多
关键词 Greedy modularity maximization Infomap collaboration network Community detection Mathematical awardees
下载PDF
A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling 被引量:2
2
作者 CuiyuWang Xinyu Li Yiping Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1849-1870,共22页
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl... Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods. 展开更多
关键词 multi-objective flexible job shop scheduling Pareto archive set collaborative evolutionary crowd similarity
下载PDF
Multi-Objective Optimization of Aluminum Alloy Electric Bus Frame Connectors for Enhanced Durability
3
作者 Wenjun Zhou Mingzhi Yang +3 位作者 Qian Peng Yong Peng Kui Wang Qiang Xiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期735-755,共21页
The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ... The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications. 展开更多
关键词 Aluminum connectors three-point bending simulation parametric design model multi-objective collaborative optimization
下载PDF
Multi-Stream Temporally Enhanced Network for Video Salient Object Detection
4
作者 Dan Xu Jiale Ru Jinlong Shi 《Computers, Materials & Continua》 SCIE EI 2024年第1期85-104,共20页
Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing com... Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet. 展开更多
关键词 Video salient object detection deep learning temporally enhanced foreground-background collaboration
下载PDF
Research on Transmission Line Tower Tilting and Foundation State Monitoring Technology Based onMulti-Sensor Cooperative Detection and Correction
5
作者 Guangxin Zhang Minghui Liu +4 位作者 Shichao Cheng Minzhen Wang Changshun Zhao Hongdan Zhao Gaiming Zhong 《Energy Engineering》 EI 2024年第1期169-185,共17页
The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the buildi... The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation. 展开更多
关键词 Transmission line tower tilting MULTI-SENSOR foundation state monitoring collaborative detection
下载PDF
Pedestrian and Vehicle Detection Based on Pruning YOLOv4 with Cloud-Edge Collaboration
6
作者 Huabin Wang Ruichao Mo +3 位作者 Yuping Chen Weiwei Lin Minxian Xu Bo Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期2025-2047,共23页
Nowadays,the rapid development of edge computing has driven an increasing number of deep learning applications deployed at the edge of the network,such as pedestrian and vehicle detection,to provide efficient intellig... Nowadays,the rapid development of edge computing has driven an increasing number of deep learning applications deployed at the edge of the network,such as pedestrian and vehicle detection,to provide efficient intelligent services to mobile users.However,as the accuracy requirements continue to increase,the components of deep learning models for pedestrian and vehicle detection,such as YOLOv4,become more sophisticated and the computing resources required for model training are increasing dramatically,which in turn leads to significant challenges in achieving effective deployment on resource-constrained edge devices while ensuring the high accuracy performance.For addressing this challenge,a cloud-edge collaboration-based pedestrian and vehicle detection framework is proposed in this paper,which enables sufficient training of models by utilizing the abundant computing resources in the cloud,and then deploying the well-trained models on edge devices,thus reducing the computing resource requirements for model training on edge devices.Furthermore,to reduce the size of the model deployed on edge devices,an automatic pruning method combines the convolution layer and BN layer is proposed to compress the pedestrian and vehicle detection model size.Experimental results show that the framework proposed in this paper is able to deploy the pruned model on a real edge device,Jetson TX2,with 6.72 times higher FPS.Meanwhile,the channel pruning reduces the volume and the number of parameters to 96.77%for the model,and the computing amount is reduced to 81.37%. 展开更多
关键词 Pedestrian and vehicle detection YOLOv4 channel pruning cloud-edge collaboration
下载PDF
Moving Multi-Object Detection and Tracking Using MRNN and PS-KM Models
7
作者 V.Premanand Dhananjay Kumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1807-1821,共15页
On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detect... On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models. 展开更多
关键词 multi-object detection object tracking feature extraction morlet wavelet mutation(MWM) ant lion optimization(ALO) background subtraction
下载PDF
Collaborative Spectrum Sensing for Illegal Drone Detection: A Deep Learning-Based Image Classification Perspective 被引量:6
8
作者 Huichao Chen Zheng Wang Linyuan Zhang 《China Communications》 SCIE CSCD 2020年第2期81-92,共12页
Drones,also known as mini-unmanned aerial vehicles(UAVs),are enjoying great popularity in recent years due to their advantages of low cost,easy to pilot and small size,which also makes them hard to detect.They can pro... Drones,also known as mini-unmanned aerial vehicles(UAVs),are enjoying great popularity in recent years due to their advantages of low cost,easy to pilot and small size,which also makes them hard to detect.They can provide real time situational awareness information by live videos or high definition pictures and pose serious threats to public security.In this article,we combine collaborative spectrum sensing with deep learning to effectively detect potential illegal drones with states of high uncertainty.First,we formulate the detection of potential illegal drones under illegitimate access and rogue power emission as a quaternary hypothesis test problem.Then,we propose an algorithm of image classification based on convolutional neural network which converts the cooperative spectrum sensing data at a sensing slot into one image.Furthermore,to exploit more information and improve the detection performance,we develop a trajectory classification algorithm which converts theflight process of the drones in consecutive multiple sensing slots into trajectory images.In addition,simulations are provided to verify the proposed methods’performance under various parameter configurations. 展开更多
关键词 illegal drones detection deep learning collaborative spectrum sensing
下载PDF
SVM-DT-Based Adaptive and Collaborative Intrusion Detection 被引量:13
9
作者 Shaohua Teng Naiqi Wu +2 位作者 Haibin Zhu Luyao Teng Wei Zhang 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2018年第1期108-118,共11页
As a primary defense technique, intrusion detection becomes more and more significant since the security of the networks is one of the most critical issues in the world. We present an adaptive collaboration intrusion ... As a primary defense technique, intrusion detection becomes more and more significant since the security of the networks is one of the most critical issues in the world. We present an adaptive collaboration intrusion detection method to improve the safety of a network. A self-adaptive and collaborative intrusion detection model is built by applying the Environmentsclasses, agents, roles, groups, and objects(E-CARGO) model. The objects, roles, agents, and groups are designed by using decision trees(DTs) and support vector machines(SVMs), and adaptive scheduling mechanisms are set up. The KDD CUP 1999 data set is used to verify the effectiveness of the method. The experimental results demonstrate the feasibility and efficiency of the proposed collaborative and adaptive intrusion detection method. Also, the proposed method is shown to be more predominant than the methods that use a set of single type support vector machine(SVM) in terms of detection precision rate and recall rate. 展开更多
关键词 Adaptive and collaborative intrusion detection decision tree(DT) support vector machines(SVM)
下载PDF
Towards Collaborative Robotics in Top View Surveillance:A Framework for Multiple Object Tracking by Detection Using Deep Learning 被引量:8
10
作者 Imran Ahmed Sadia Din +2 位作者 Gwanggil Jeon Francesco Piccialli Giancarlo Fortino 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第7期1253-1270,共18页
Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It a... Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It allows the deployment of smart cameras or optical sensors with computer vision techniques,which may serve in several object detection and tracking tasks.These tasks have been considered challenging and high-level perceptual problems,frequently dominated by relative information about the environment,where main concerns such as occlusion,illumination,background,object deformation,and object class variations are commonplace.In order to show the importance of top view surveillance,a collaborative robotics framework has been presented.It can assist in the detection and tracking of multiple objects in top view surveillance.The framework consists of a smart robotic camera embedded with the visual processing unit.The existing pre-trained deep learning models named SSD and YOLO has been adopted for object detection and localization.The detection models are further combined with different tracking algorithms,including GOTURN,MEDIANFLOW,TLD,KCF,MIL,and BOOSTING.These algorithms,along with detection models,help to track and predict the trajectories of detected objects.The pre-trained models are employed;therefore,the generalization performance is also investigated through testing the models on various sequences of top view data set.The detection models achieved maximum True Detection Rate 93%to 90%with a maximum 0.6%False Detection Rate.The tracking results of different algorithms are nearly identical,with tracking accuracy ranging from 90%to 94%.Furthermore,a discussion has been carried out on output results along with future guidelines. 展开更多
关键词 collaborative robotics deep learning object detection and tracking top view video surveillance
下载PDF
Challenge-based collaborative intrusion detection in software-defined networking: An evaluation 被引量:4
11
作者 Wenjuan Li Yu Wang +3 位作者 Zhiping Jin Keping Yu Jin Li Yang Xiang 《Digital Communications and Networks》 SCIE CSCD 2021年第2期257-263,共7页
Software-Defined Networking(SDN)is an emerging architecture that enables a computer network to be intelligently and centrally controlled via software applications.It can help manage the whole network environment in a ... Software-Defined Networking(SDN)is an emerging architecture that enables a computer network to be intelligently and centrally controlled via software applications.It can help manage the whole network environment in a consistent and holistic way,without the need of understanding the underlying network structure.At present,SDN may face many challenges like insider attacks,i.e.,the centralized control plane would be attacked by malicious underlying devices and switches.To protect the security of SDN,effective detection approaches are indispensable.In the literature,challenge-based collaborative intrusion detection networks(CIDNs)are an effective detection framework in identifying malicious nodes.It calculates the nodes'reputation and detects a malicious node by sending out a special message called a challenge.In this work,we devise a challenge-based CIDN in SDN and measure its performance against malicious internal nodes.Our results demonstrate that such a mechanism can be effective in SDN environments. 展开更多
关键词 Software-defined networking Trust management collaborative intrusion detection Insider attack Challenge mechanism
下载PDF
A Diffusion-Based Distributed Collaborative Energy Detection Algorithm for Spectrum Sensing in Cognitive Radio 被引量:1
12
作者 Junfang Li Wenxiao Chen +1 位作者 Shaoli Kang Yongming Guo 《Communications and Network》 2013年第3期276-279,共4页
Spectrum sensing is one of the most important steps in cognitive radio. In this paper, a new fully-distributed collaborative energy detection algorithm based on diffusion cooperation scheme and consensus filtering the... Spectrum sensing is one of the most important steps in cognitive radio. In this paper, a new fully-distributed collaborative energy detection algorithm based on diffusion cooperation scheme and consensus filtering theory is proposed, which doesn’t need the center node to fuse the detection results of all users. The secondary users only exchange information with their neighbors to obtain the detection data, and then make the corresponding decisions independently according to the pre-defined threshold. Simulations show that the proposed algorithm is more superior to the existing centralized collaborative energy detection algorithm in terms of the detecting performance and robustness in the insecurity situation. 展开更多
关键词 collaborative Energy detection Data DIFFUSION COGNITIVE RADIO SPECTRUM Sensing
下载PDF
The Use of Multi-Objective Genetic Algorithm Based Approach to Create Ensemble of ANN for Intrusion Detection
13
作者 Gulshan Kumar Krishan Kumar 《International Journal of Intelligence Science》 2012年第4期115-127,共13页
Due to our increased dependence on Internet and growing number of intrusion incidents, building effective intrusion detection systems are essential for protecting Internet resources and yet it is a great challenge. In... Due to our increased dependence on Internet and growing number of intrusion incidents, building effective intrusion detection systems are essential for protecting Internet resources and yet it is a great challenge. In literature, many researchers utilized Artificial Neural Networks (ANN) in supervised learning based intrusion detection successfully. Here, ANN maps the network traffic into predefined classes i.e. normal or specific attack type based upon training from label dataset. However, for ANN-based IDS, detection rate (DR) and false positive rate (FPR) are still needed to be improved. In this study, we propose an ensemble approach, called MANNE, for ANN-based IDS that evolves ANNs by Multi Objective Genetic algorithm to solve the problem. It helps IDS to achieve high DR, less FPR and in turn high intrusion detection capability. The procedure of MANNE is as follows: firstly, a Pareto front consisting of a set of non-dominated ANN solutions is created using MOGA, which formulates the base classifiers. Subsequently, based upon this pool of non-dominated ANN solutions as base classifiers, another Pareto front consisting of a set of non-dominated ensembles is created which exhibits classification tradeoffs. Finally, prediction aggregation is done to get final ensemble prediction from predictions of base classifiers. Experimental results on the KDD CUP 1999 dataset show that our proposed ensemble approach, MANNE, outperforms ANN trained by Back Propagation and its ensembles using bagging & boosting methods in terms of defined performance metrics. We also compared our approach with other well-known methods such as decision tree and its ensembles using bagging & boosting methods. 展开更多
关键词 ENSEMBLE CLASSIFIERS INTRUSION detection System INTRUSION detection multi-objective Genetic Algorithm
下载PDF
Conflict detection in collaborative architectural pipe routing design based on constraint network
14
作者 苏孝钐 Tian Ling 《High Technology Letters》 EI CAS 2013年第2期117-124,共8页
This paper analyzes conflict features in architecture pipe routing,and builds a pipe routing design conflict model by taking into account of discrete nominal internal diameter selection of pipes,material costs,and con... This paper analyzes conflict features in architecture pipe routing,and builds a pipe routing design conflict model by taking into account of discrete nominal internal diameter selection of pipes,material costs,and conflict solution sequence.Considering pipe routing as an assembling process,a conflict detection approach for pipe routing in collaborative architectural design is proposed based on an aforementioned model.Constraint network is used to describe the relationship among pipe routing design parameters and constraints;design conflicts are detected by matching designers' input and constraint network;and detected design conflicts are reordered according to the number of pipe parameters in conflicts.In order to support the collaborative requirement of pipe routing design,a prototype system using browser/server architecture is developed.An illustrative example of water pipe routing in a room is used to show the effectiveness and efficiency of the approach. 展开更多
关键词 conflict detection constraint network piping routing collaborative design archi-tectural pipe routing
下载PDF
Designing and Evaluating a Collaborative Knowledge Management Framework for Leaf Disease Detection
15
作者 Komal Bashir Mariam Rehman +1 位作者 Afnan Bashir Faria Kanwal 《Computer Systems Science & Engineering》 SCIE EI 2022年第8期751-777,共27页
Knowledge Management(KM)has become a dynamic concept for inquiry in research.The management of knowledge from multiple sources requires a systematic approach that can facilitate capturing all important aspects related... Knowledge Management(KM)has become a dynamic concept for inquiry in research.The management of knowledge from multiple sources requires a systematic approach that can facilitate capturing all important aspects related to a particular discipline,several KM frameworks have been designed to serve this purpose.This research aims to propose a Collaborative Knowledge Management(CKM)Framework that bridges gaps and overcomes weaknesses in existing frameworks.The paper also validates the framework by evaluating its effectiveness for the agriculture sector of Pakistan.A software LCWU aKMS was developed which serves as a practical implementation of the concepts behind the proposed CKMF framework.LCWU aKMS served as an effective system for rice leaf disease detection and identification.It aimed to enhance CKM through knowledge sharing,lessons learned,feedback on problem resolutions,help from co-workers,collaboration,and helping communities.Data were collected from 300 rice crop farmers by questionnaires based on hypotheses.Jennex Olfman model was used to estimate the effectiveness of CKMF.Various tests were performed including frequency measures of variables,Cronbach’s alpha reliability,and Pearson’s correlation.The research provided a KMS depicting KM and collaborative features.The disease detection module was evaluated using the precision and recall method and found to be 94.16%accurate.The system could replace the work of extension agents,making it a cost and time-effective initiative for farmer betterment. 展开更多
关键词 collaborative knowledge management FRAMEWORK jennex olfman km success model knowledge management rice disease detection
下载PDF
Research on engineering-oriented constraints conflict detection in collaborative design of wire harness technology
16
作者 LIU Xiaoping HE Honglin XU Benzhu 《Computer Aided Drafting,Design and Manufacturing》 2012年第2期13-19,共7页
Engineering-oriented constraint of harness technology has much information and project information presents progressive changes along with the design. Therefore, how to handle conflict resolution quickly is a problem ... Engineering-oriented constraint of harness technology has much information and project information presents progressive changes along with the design. Therefore, how to handle conflict resolution quickly is a problem to be solved. Process model of con- flict detection is put forward according to characteristics of harness technology design engineering-oriented constraint, and then two problems of how to conduct conflict positioning and judgment of constraint rules are introduced in this paper. Afterwards in this pa- per, constraint information directed acyclic graph is established by classified project constraint information to solve the conflict posi- tioning problem; solution of constraint satisfaction problem is applied to realize judgment problem of constraint rules. Finally, exam- ple is used to analyze the method in this paper to further verify the correctness and effectiveness of this method. 展开更多
关键词 harness technology collaborative design conflict detection engineering-oriented constraint
下载PDF
Towards Cache-Assisted Hierarchical Detection for Real-Time Health Data Monitoring in IoHT
17
作者 Muhammad Tahir Mingchu Li +4 位作者 Irfan Khan Salman AAl Qahtani Rubia Fatima Javed Ali Khan Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2023年第11期2529-2544,共16页
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff... Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems. 展开更多
关键词 Real-time health data monitoring Cache-Assisted Real-Time detection(CARD) edge-cloud collaborative caching scheme hierarchical detection Internet of Health Things(IoHT)
下载PDF
An Improved Multi-Objective Particle Swarm Optimization Routing on MANET
18
作者 G.Rajeshkumar M.Vinoth Kumar +3 位作者 K.Sailaja Kumar Surbhi Bhatia Arwa Mashat Pankaj Dadheech 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1187-1200,共14页
A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary a... A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary aim of MANETs is to extendflexibility into the self-directed,mobile,and wireless domain,in which a cluster of autonomous nodes forms a MANET routing system.An Intrusion Detection System(IDS)is a tool that examines a network for mal-icious behavior/policy violations.A network monitoring system is often used to report/gather any suspicious attacks/violations.An IDS is a software program or hardware system that monitors network/security traffic for malicious attacks,sending out alerts whenever it detects malicious nodes.The impact of Dynamic Source Routing(DSR)in MANETs challenging blackhole attack is investigated in this research article.The Cluster Trust Adaptive Acknowledgement(CTAA)method is used to identify unauthorised and malfunctioning nodes in a MANET environment.MANET system is active and provides successful delivery of a data packet,which implements Kalman Filters(KF)to anticipate node trustworthiness.Furthermore,KF is used to eliminate synchronisation errors that arise during the sending and receiving data.In order to provide an energy-efficient solution and to minimize network traffic,route optimization in MANET by using Multi-Objective Particle Swarm Optimization(MOPSO)technique to determine the optimal num-ber of clustered MANET along with energy dissipation in nodes.According to the researchfindings,the proposed CTAA-MPSO achieves a Packet Delivery Ratio(PDR)of 3.3%.In MANET,the PDR of CTAA-MPSO improves CTAA-PSO by 3.5%at 30%malware. 展开更多
关键词 MANET intrusion detection system CLUSTER kalmanfilter dynamic source routing multi-objective particle swarm optimization packet delivery ratio
下载PDF
Multi-Object Detection of Chinese License Plate in Complex Scenes
19
作者 Dan Liu Yajuan Wu +2 位作者 Yuxin He Lu Qin Bochuan Zheng 《Computer Systems Science & Engineering》 SCIE EI 2021年第1期145-156,共12页
Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background.The edge features of high... Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background.The edge features of high-density distribution and the high curvature features of stroke turning of Chinese character are important signs to distinguish Chinese license plate from other objects.To accurately detect multiple vehicle license plates with different sizes and classes in complex scenes,a multi-object detection of Chinese license plate method based on improved YOLOv3 network was proposed in this research.The improvements include replacing the residual block of the YOLOv3 backbone network with the Inception-ResNet-A block,imbedding the SPP block into the detection network,cutting the redundant Inception-ResNet-A block to suit for the multi-license plate detection task,and clustering the ground truth boxes of license plates to obtain a new set of anchor boxes.A Chinese vehicle license plate image dataset was built for training and testing the improved network,and the location and class of the license plates in each image were accurately labeled.The dataset has 62,153 pieces of images and 4 classes of China vehicle license plates,almost images have multiple license plates with different sizes.Experiments demonstrated that the multilicense plate detection method obtained 83.4%mAP,98.88%precision,98.17%recall,98.52 F1 score,89.196 BFLOPS and 22 FPS on the test dataset,and whole performance was better than the other five compared networks including YOLOv3,SSD,Faster-RCNN,EfficientDet and RetinaNet. 展开更多
关键词 Chinese vehicle license plate multiple license plate multi-object detection Inception-ResNet-A spatial pyramid pooling
下载PDF
Deep Reinforcement Learning Based Resource Allocation for Fault Detection with Cloud Edge Collaboration in Smart Grid
20
作者 Qiyue Li Yadong Zhu +3 位作者 Jinjin Ding Weitao Li Wei Sun Lijian Ding 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1220-1230,共11页
Real-time fault detection is important for operation of smart grid.It has become a trend of future development to design an anomaly detection system based on deep learning by using the powerful computing power of the ... Real-time fault detection is important for operation of smart grid.It has become a trend of future development to design an anomaly detection system based on deep learning by using the powerful computing power of the cloud.However,delay of Internet transmission is large,which may make the delay time of detection and transmission go beyond the limits.However,the edge-based scheme may not be able to undertake all data detection tasks due to limited computing resources of edge devices.Therefore,we propose a cloud-edge collaborative smart grid fault detection system,next to which edge devices are placed,and equipped with a lightweight neural network with different precision for fault detection.In addition,a sub-optimal and realtime communication and computing resource allocation method is proposed based on deep reinforcement learning.This method greatly speeds up solution time,which can meet the requirements of data transmission delay,maximize the system throughput,and improve communication efficiency.Simulation results show the scheme is superior in transmission delay and improves real-time performance of the smart grid detection system. 展开更多
关键词 Cloud-edge collaboration communication delay deep reinforcement learning fault detection smart grid
原文传递
上一页 1 2 23 下一页 到第
使用帮助 返回顶部