With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p...With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distribut...In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.展开更多
The distribution networks of agglomerated areas of the developing countries are generally the seat of overloads, voltage drops, and untimely interruptions of the power supply. This paper consisted of optimizing the gr...The distribution networks of agglomerated areas of the developing countries are generally the seat of overloads, voltage drops, and untimely interruptions of the power supply. This paper consisted of optimizing the grid topology and placement of a DSTATCOM in a SBEE real distribution network in order to improve its technical performance. The modified ant colony algorithms solved this difficult combinatorial problem, which integrated among the criteria, the minimization of the losses and the deviation of the node voltages under operational constraints about distribution networks operation. According to the results obtained, the optimization of the topology of a distribution network and the placement of DSTATCOM contributed qualitatively to improve the losses, voltage and stability plans of the Togba distribution network. Actually, the hybridization of optimization means such as the placement of DSTATCOM and the reconfiguration of the networks applied to the Togba HVA network made the power of DSTATCOM optimization possible by almost 50.71% and reduce losses to 83.57%. The implementations of those algorithms are very efficient and effective, and can be implemented to help distribution system operators, developing countries and in particular, the operators of the Beninese Electric Power Company to perform their electrical network.展开更多
Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in t...Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in the stability of DN operation.It is urgent to find a method that can effectively connect multi-energy DG to DN.photovoltaic(PV),wind power generation(WPG),fuel cell(FC),and micro gas turbine(MGT)are considered in this paper.A multi-objective optimization model was established based on the life cycle cost(LCC)of DG,voltage quality,voltage fluctuation,system network loss,power deviation of the tie-line,DG pollution emission index,and meteorological index weight of DN.Multi-objective artificial bee colony algorithm(MOABC)was used to determine the optimal location and capacity of the four kinds of DG access DN,and compared with the other three heuristic algorithms.Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node,the total voltage deviation,voltage fluctuation,and system network loss of DN decreased by 49.67%,7.47%and 48.12%,respectively,compared with that without DG configuration.In the IEEE 69 test node,the total voltage deviation,voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%,35.93%and 75.17%,respectively,compared with that without DG configuration,indicating that MOABC can reasonably plan the capacity and location of DG.Achieve the maximum trade-off between DG economy and DN operation stability.展开更多
An efficient algorithm ESA combining evolution strategies(ES) with simulated annealing(SA) is proposed in this paper. We first use ES to choose an initial temperature, then use a modified SA to find a global optimum f...An efficient algorithm ESA combining evolution strategies(ES) with simulated annealing(SA) is proposed in this paper. We first use ES to choose an initial temperature, then use a modified SA to find a global optimum for the problem. An efficient load flow method and a heuristic criterion for determining the temperature lowering scheme are employed in order to speed up the computation. The solution algorithm has been tested on a distribution system with very promising results.展开更多
With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the o...With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the optimal configuration of improving economy of the system,and then identifying the important nodes.In this strategy,the objectives increase the node importance degree and decrease the active power loss subjected to operational constraints.A compound objective function with weight coefficients is formulated to balance the conflict of the objectives.Then a novel quantum particle swarm optimization based on loop switches hierarchical encoded was employed to address the compound objective reconfiguration problem.Its main contribution is the presentation of the hierarchical encoded scheme which is used to generate the population swarm particles of representing only radial connected solutions.Because the candidate solutions are feasible,the search efficiency would improve dramatically during the optimization process without tedious topology verification.To validate the proposed strategy,simulations are carried out on the test systems.The results are compared with other techniques in order to evaluate the performance of the proposed method.展开更多
This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devic...This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.展开更多
This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is use...This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.展开更多
This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, ener...This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.展开更多
In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is...In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is great important.In this work,a combination of a fuzzy multi-objective approach and bacterial foraging optimization(BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.Each objective is transferred into fuzzy domain using its membership function.Then,the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution.The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms.Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation(case 5) has 77.41%,42.15%,and 56.14%improvements in power loss reduction,load balancing,and voltage profile indices,respectively in 33-bus test system.This result found 87.27%,35.82%,and 54.34%improvements of mentioned indices respectively for 69-bus system.展开更多
Distribution systems are facing challenges in serving lifeline loads after extreme events.Network reconfiguration is a traditional and practical method for power supply restoration,which has strong but inflexible powe...Distribution systems are facing challenges in serving lifeline loads after extreme events.Network reconfiguration is a traditional and practical method for power supply restoration,which has strong but inflexible power transfer capabilities influenced by network topology.Multiple failures of utility power under extreme events will further limit the efficiency of network reconfiguration.Electric buses(EBs)can be utilized to achieve power supply considering their discharging capabilities as mobile storage devices.However,the mobility of EBs and the influences of transport systems must be carefully considered to enhance the resilience of distribution systems.Reconfiguration and EBs are complementary in terms of recovery capabilities and location flexibility,and more important loads can be recovered by the coordination between EBs and network reconfiguration.This paper proposes a coordinated restoration method for EBs and reconfigurations considering the influences of transport systems.The post-disaster restoration problem is formulated as a bi-level model,in which the network topology is optimized in the upperlevel aiming at maximizing restoration loads through the main grid and EBs,while the traffic paths of all EBs are optimized with the goal of maximizing the restoration loads by the EBs in the lower-level considering time consumption and energy consumption during movement.The PSO and a genetic algorithm are used to solve the proposed bi-level optimization problem.Simulation studies are performed to verify the superiority of the proposed method.展开更多
Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution netw...Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution network rush-repair when single resource center cannot meet the emergent resource demands. A multi-resource and multi-center dispatching model is established with the objective of “the shortest repair start-time” and “the least number of the repair centers”. The optimal and worst solutions of each objective are both obtained, and a “proximity degree method” is used to calculate the optimal resource dispatching plan. The feasibility of the proposed algorithm is illustrated by an example of a distribution network fault. The proposed method provides a practical technique for efficiency improvement of fault rush-repair work of distribution network, and thus mostly abbreviates power recovery time and improves the management level of the distribution network.展开更多
Network reconfiguration and capacitor switching are important measures to reduce power loss and improve security and economy in automation of distribution. A new method based on parallel genetic algorithm is proposed ...Network reconfiguration and capacitor switching are important measures to reduce power loss and improve security and economy in automation of distribution. A new method based on parallel genetic algorithm is proposed to search the whole problem space for better solution. Multiple populations evolve independently and communicate periodically, which simulates parallel computing process to save computing time. The results show that the method is robust and has better benefit than the alterative iteration method. In addition, the effect of overall optimization is better than optimization alone. Power loss can be reduced and the level of voltage can be greatly improved.展开更多
With the large-scale distributed generations(DGs)being connected to distribution network(DN), the traditional day-ahead reconfiguration methods based on physical models are challenged to maintain the robustness and av...With the large-scale distributed generations(DGs)being connected to distribution network(DN), the traditional day-ahead reconfiguration methods based on physical models are challenged to maintain the robustness and avoid voltage offlimits. To address these problems, this paper develops a deep reinforcement learning method for the sequential reconfiguration with soft open points(SOPs) based on real-time data. A statebased decision model is first proposed by constructing a Marko decision process-based reconfiguration and SOP joint optimization model so that the decisions can be achieved in milliseconds.Then, a deep reinforcement learning joint framework including branching double deep Q network(BDDQN) and multi-policy soft actor-critic(MPSAC) is proposed, which has significantly improved the learning efficiency of the decision model in multidimensional mixed-integer action space. And the influence of DG and load uncertainty on control results has been minimized by using the real-time status of the DN to make control decisions. The numerical simulations on the IEEE 34-bus and 123-bus systems demonstrate that the proposed method can effectively reduce the operation cost and solve the overvoltage problem caused by high ratio of photovoltaic(PV) integration.展开更多
The increasing integration of photovoltaic generators(PVGs) and the uneven economic development in different regions may cause the unbalanced spatial-temporal distribution of load demands in an urban distribution netw...The increasing integration of photovoltaic generators(PVGs) and the uneven economic development in different regions may cause the unbalanced spatial-temporal distribution of load demands in an urban distribution network(UDN). This may lead to undesired consequences, including PVG curtailment, load shedding, and equipment inefficiency, etc. Global dynamic reconfiguration provides a promising method to solve those challenges. However, the power flow transfer capabilities for different kinds of switches are diverse, and the willingness of distribution system operators(DSOs) to select them is also different. In this paper, we formulate a multi-objective dynamic reconfiguration optimization model suitable for multi-level switching modes to minimize the operation cost, load imbalance, and the PVG curtailment. The multi-level switching includes feeder-level switching, transformer-level switching, and substation-level switching. A novel load balancing index is devised to quantify the global load balancing degree at different levels. Then, a stochastic programming model based on selected scenarios is established to address the uncertainties of PVGs and loads. Afterward, the fuzzy c-means(FCMs) clustering is applied to divide the time periods of reconfiguration. Furthermore, the modified binary particle swarm optimization(BPSO)and Cplex solver are combined to solve the proposed mixed-integer second-order cone programming(MISOCP) model. Numerical results based on the 148-node and 297-node systems are obtained to validate the effectiveness of the proposed method.展开更多
The purpose of active distribution networks(ADNs)is to provide effective control approaches for enhancing the operation of distribution networks(DNs)and greater accommodation of distributed generation(DG)sources.With ...The purpose of active distribution networks(ADNs)is to provide effective control approaches for enhancing the operation of distribution networks(DNs)and greater accommodation of distributed generation(DG)sources.With the integration of DG sources into DNs,several operational problems have drawn attention such as overvoltage and power flow alteration issues.These problems can be dealt with by utilizing distribution network reconfiguration(DNR)and soft open points(SOPs).An SOP is a power electronic device capable of accurately controlling active and reactive power flows.Another significant aspect often overlooked is the coordination of protection devices needed to keep the network safe from damage.When implementing DNR and SOPs in real DNs,protection constraints must be considered.This paper presents an ADN reconfiguration approach that includes DG sources,SOPs,and protection devices.This approach selects the ideal configuration,DG output,and SOP placement and control by employing particle swarm optimization(PSO)to minimize power loss while ensuring the correct operation of protection devices under normal and fault conditions.The proposed approach explicitly formulates constraints on network operation,protection coordination,DG size,and SOP size.Finally,the proposed approach is evaluated using the standard IEEE 33-bus and IEEE 69-bus networks to demonstrate the validity.展开更多
Bipolar direct current(DC)distribution networks can effectively improve the connection flexibility for renewable generations and loads.In practice,concerns regarding the potential voltage unbalance issue of the distri...Bipolar direct current(DC)distribution networks can effectively improve the connection flexibility for renewable generations and loads.In practice,concerns regarding the potential voltage unbalance issue of the distribution networks and the frequency of switching still remain.This paper proposes a day-ahead polarity switching strategy to reduce voltage unbalance by optimally switching the polarity of renewable generations and loads while minimizing the switching times simultaneously in the range of a full day.First,a multi-objective optimization model is constructed to minimize the weighted sum of voltage unbalance factors and the sum of number of switching actions in the day based on the power flow model.Second,a two-step solution strategy is proposed to solve the optimization model.Finally,the proposed strategy is validated using 11-node and 34-node distribution networks as case studies,and a switching and stabilizing device is designed to enable unified switching of renewable generations and loads.Numerical results demonstrate that the proposed strategy can effectively reduce the switching times without affecting the improvement of voltage balance.展开更多
The increasing integration of intermittent renewable energy sources(RESs)poses great challenges to active distribution networks(ADNs),such as frequent voltage fluctuations.This paper proposes a novel ADN strategy base...The increasing integration of intermittent renewable energy sources(RESs)poses great challenges to active distribution networks(ADNs),such as frequent voltage fluctuations.This paper proposes a novel ADN strategy based on multiagent deep reinforcement learning(MADRL),which harnesses the regulating function of switch state transitions for the realtime voltage regulation and loss minimization.After deploying the calculated optimal switch topologies,the distribution network operator will dynamically adjust the distributed energy resources(DERs)to enhance the operation performance of ADNs based on the policies trained by the MADRL algorithm.Owing to the model-free characteristics and the generalization of deep reinforcement learning,the proposed strategy can still achieve optimization objectives even when applied to similar but unseen environments.Additionally,integrating parameter sharing(PS)and prioritized experience replay(PER)mechanisms substantially improves the strategic performance and scalability.This framework has been tested on modified IEEE 33-bus,IEEE 118-bus,and three-phase unbalanced 123-bus systems.The results demonstrate the significant real-time regulation capabilities of the proposed strategy.展开更多
The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users...The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate independently.Traditional centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is proposed.Firstly,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning schemes.The steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion model.Then,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating simulation.Under the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange requirement.Finally,an SDN with four MGs is conducted considering multiple flexible resources.It shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch capacity.Besides,the annual DG electricity oversteps the maximum active power demand value.展开更多
基金This research is supported by the Science and Technology Program of Gansu Province(No.23JRRA880).
文摘With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金The authors gratefully acknowledge the support of the Enhancement Strategy of Multi-Type Energy Integration of Active Distribution Network(YNKJXM20220113).
文摘In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.
文摘The distribution networks of agglomerated areas of the developing countries are generally the seat of overloads, voltage drops, and untimely interruptions of the power supply. This paper consisted of optimizing the grid topology and placement of a DSTATCOM in a SBEE real distribution network in order to improve its technical performance. The modified ant colony algorithms solved this difficult combinatorial problem, which integrated among the criteria, the minimization of the losses and the deviation of the node voltages under operational constraints about distribution networks operation. According to the results obtained, the optimization of the topology of a distribution network and the placement of DSTATCOM contributed qualitatively to improve the losses, voltage and stability plans of the Togba distribution network. Actually, the hybridization of optimization means such as the placement of DSTATCOM and the reconfiguration of the networks applied to the Togba HVA network made the power of DSTATCOM optimization possible by almost 50.71% and reduce losses to 83.57%. The implementations of those algorithms are very efficient and effective, and can be implemented to help distribution system operators, developing countries and in particular, the operators of the Beninese Electric Power Company to perform their electrical network.
文摘Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in the stability of DN operation.It is urgent to find a method that can effectively connect multi-energy DG to DN.photovoltaic(PV),wind power generation(WPG),fuel cell(FC),and micro gas turbine(MGT)are considered in this paper.A multi-objective optimization model was established based on the life cycle cost(LCC)of DG,voltage quality,voltage fluctuation,system network loss,power deviation of the tie-line,DG pollution emission index,and meteorological index weight of DN.Multi-objective artificial bee colony algorithm(MOABC)was used to determine the optimal location and capacity of the four kinds of DG access DN,and compared with the other three heuristic algorithms.Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node,the total voltage deviation,voltage fluctuation,and system network loss of DN decreased by 49.67%,7.47%and 48.12%,respectively,compared with that without DG configuration.In the IEEE 69 test node,the total voltage deviation,voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%,35.93%and 75.17%,respectively,compared with that without DG configuration,indicating that MOABC can reasonably plan the capacity and location of DG.Achieve the maximum trade-off between DG economy and DN operation stability.
文摘An efficient algorithm ESA combining evolution strategies(ES) with simulated annealing(SA) is proposed in this paper. We first use ES to choose an initial temperature, then use a modified SA to find a global optimum for the problem. An efficient load flow method and a heuristic criterion for determining the temperature lowering scheme are employed in order to speed up the computation. The solution algorithm has been tested on a distribution system with very promising results.
基金Project(61102039)supported by the National Natural Science Foundation of ChinaProject(2014AA052600)supported by National Hi-tech Research and Development Plan,China
文摘With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the optimal configuration of improving economy of the system,and then identifying the important nodes.In this strategy,the objectives increase the node importance degree and decrease the active power loss subjected to operational constraints.A compound objective function with weight coefficients is formulated to balance the conflict of the objectives.Then a novel quantum particle swarm optimization based on loop switches hierarchical encoded was employed to address the compound objective reconfiguration problem.Its main contribution is the presentation of the hierarchical encoded scheme which is used to generate the population swarm particles of representing only radial connected solutions.Because the candidate solutions are feasible,the search efficiency would improve dramatically during the optimization process without tedious topology verification.To validate the proposed strategy,simulations are carried out on the test systems.The results are compared with other techniques in order to evaluate the performance of the proposed method.
基金supported by Borujerd Branch,Islamic Azad University Iran
文摘This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.
文摘This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.
基金financial supports and the strategic platform for innovation&research provided by Danish national project iPower.
文摘This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.
文摘In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is great important.In this work,a combination of a fuzzy multi-objective approach and bacterial foraging optimization(BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.Each objective is transferred into fuzzy domain using its membership function.Then,the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution.The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms.Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation(case 5) has 77.41%,42.15%,and 56.14%improvements in power loss reduction,load balancing,and voltage profile indices,respectively in 33-bus test system.This result found 87.27%,35.82%,and 54.34%improvements of mentioned indices respectively for 69-bus system.
基金supported by Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.52061635104)National Natural Science Foundation of China(No.51977211).
文摘Distribution systems are facing challenges in serving lifeline loads after extreme events.Network reconfiguration is a traditional and practical method for power supply restoration,which has strong but inflexible power transfer capabilities influenced by network topology.Multiple failures of utility power under extreme events will further limit the efficiency of network reconfiguration.Electric buses(EBs)can be utilized to achieve power supply considering their discharging capabilities as mobile storage devices.However,the mobility of EBs and the influences of transport systems must be carefully considered to enhance the resilience of distribution systems.Reconfiguration and EBs are complementary in terms of recovery capabilities and location flexibility,and more important loads can be recovered by the coordination between EBs and network reconfiguration.This paper proposes a coordinated restoration method for EBs and reconfigurations considering the influences of transport systems.The post-disaster restoration problem is formulated as a bi-level model,in which the network topology is optimized in the upperlevel aiming at maximizing restoration loads through the main grid and EBs,while the traffic paths of all EBs are optimized with the goal of maximizing the restoration loads by the EBs in the lower-level considering time consumption and energy consumption during movement.The PSO and a genetic algorithm are used to solve the proposed bi-level optimization problem.Simulation studies are performed to verify the superiority of the proposed method.
文摘Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution network rush-repair when single resource center cannot meet the emergent resource demands. A multi-resource and multi-center dispatching model is established with the objective of “the shortest repair start-time” and “the least number of the repair centers”. The optimal and worst solutions of each objective are both obtained, and a “proximity degree method” is used to calculate the optimal resource dispatching plan. The feasibility of the proposed algorithm is illustrated by an example of a distribution network fault. The proposed method provides a practical technique for efficiency improvement of fault rush-repair work of distribution network, and thus mostly abbreviates power recovery time and improves the management level of the distribution network.
文摘Network reconfiguration and capacitor switching are important measures to reduce power loss and improve security and economy in automation of distribution. A new method based on parallel genetic algorithm is proposed to search the whole problem space for better solution. Multiple populations evolve independently and communicate periodically, which simulates parallel computing process to save computing time. The results show that the method is robust and has better benefit than the alterative iteration method. In addition, the effect of overall optimization is better than optimization alone. Power loss can be reduced and the level of voltage can be greatly improved.
基金supported in part by the Smart Grid Joint Fund Integration Program of National Natural Science Foundation of China and State Grid Corporation of China (No. U2166202)National Natural Science Foundation of China (No. 52077149)。
文摘With the large-scale distributed generations(DGs)being connected to distribution network(DN), the traditional day-ahead reconfiguration methods based on physical models are challenged to maintain the robustness and avoid voltage offlimits. To address these problems, this paper develops a deep reinforcement learning method for the sequential reconfiguration with soft open points(SOPs) based on real-time data. A statebased decision model is first proposed by constructing a Marko decision process-based reconfiguration and SOP joint optimization model so that the decisions can be achieved in milliseconds.Then, a deep reinforcement learning joint framework including branching double deep Q network(BDDQN) and multi-policy soft actor-critic(MPSAC) is proposed, which has significantly improved the learning efficiency of the decision model in multidimensional mixed-integer action space. And the influence of DG and load uncertainty on control results has been minimized by using the real-time status of the DN to make control decisions. The numerical simulations on the IEEE 34-bus and 123-bus systems demonstrate that the proposed method can effectively reduce the operation cost and solve the overvoltage problem caused by high ratio of photovoltaic(PV) integration.
基金supported by the National Key R&D Program of China (No.2019YFE0123600)National Natural Science Foundation of China (No.52077146)Young Elite Scientists Sponsorship Program by CSEE (No.CESS-YESS-2019027)。
文摘The increasing integration of photovoltaic generators(PVGs) and the uneven economic development in different regions may cause the unbalanced spatial-temporal distribution of load demands in an urban distribution network(UDN). This may lead to undesired consequences, including PVG curtailment, load shedding, and equipment inefficiency, etc. Global dynamic reconfiguration provides a promising method to solve those challenges. However, the power flow transfer capabilities for different kinds of switches are diverse, and the willingness of distribution system operators(DSOs) to select them is also different. In this paper, we formulate a multi-objective dynamic reconfiguration optimization model suitable for multi-level switching modes to minimize the operation cost, load imbalance, and the PVG curtailment. The multi-level switching includes feeder-level switching, transformer-level switching, and substation-level switching. A novel load balancing index is devised to quantify the global load balancing degree at different levels. Then, a stochastic programming model based on selected scenarios is established to address the uncertainties of PVGs and loads. Afterward, the fuzzy c-means(FCMs) clustering is applied to divide the time periods of reconfiguration. Furthermore, the modified binary particle swarm optimization(BPSO)and Cplex solver are combined to solve the proposed mixed-integer second-order cone programming(MISOCP) model. Numerical results based on the 148-node and 297-node systems are obtained to validate the effectiveness of the proposed method.
文摘The purpose of active distribution networks(ADNs)is to provide effective control approaches for enhancing the operation of distribution networks(DNs)and greater accommodation of distributed generation(DG)sources.With the integration of DG sources into DNs,several operational problems have drawn attention such as overvoltage and power flow alteration issues.These problems can be dealt with by utilizing distribution network reconfiguration(DNR)and soft open points(SOPs).An SOP is a power electronic device capable of accurately controlling active and reactive power flows.Another significant aspect often overlooked is the coordination of protection devices needed to keep the network safe from damage.When implementing DNR and SOPs in real DNs,protection constraints must be considered.This paper presents an ADN reconfiguration approach that includes DG sources,SOPs,and protection devices.This approach selects the ideal configuration,DG output,and SOP placement and control by employing particle swarm optimization(PSO)to minimize power loss while ensuring the correct operation of protection devices under normal and fault conditions.The proposed approach explicitly formulates constraints on network operation,protection coordination,DG size,and SOP size.Finally,the proposed approach is evaluated using the standard IEEE 33-bus and IEEE 69-bus networks to demonstrate the validity.
基金supported by Fundamental Research Funds for the Central Universities(No.2022CDJXY-007)。
文摘Bipolar direct current(DC)distribution networks can effectively improve the connection flexibility for renewable generations and loads.In practice,concerns regarding the potential voltage unbalance issue of the distribution networks and the frequency of switching still remain.This paper proposes a day-ahead polarity switching strategy to reduce voltage unbalance by optimally switching the polarity of renewable generations and loads while minimizing the switching times simultaneously in the range of a full day.First,a multi-objective optimization model is constructed to minimize the weighted sum of voltage unbalance factors and the sum of number of switching actions in the day based on the power flow model.Second,a two-step solution strategy is proposed to solve the optimization model.Finally,the proposed strategy is validated using 11-node and 34-node distribution networks as case studies,and a switching and stabilizing device is designed to enable unified switching of renewable generations and loads.Numerical results demonstrate that the proposed strategy can effectively reduce the switching times without affecting the improvement of voltage balance.
基金supported by the National Natural Science Foundation of China(No.52077146)Sichuan Science and Technology Program(No.2023NSFSC1945)。
文摘The increasing integration of intermittent renewable energy sources(RESs)poses great challenges to active distribution networks(ADNs),such as frequent voltage fluctuations.This paper proposes a novel ADN strategy based on multiagent deep reinforcement learning(MADRL),which harnesses the regulating function of switch state transitions for the realtime voltage regulation and loss minimization.After deploying the calculated optimal switch topologies,the distribution network operator will dynamically adjust the distributed energy resources(DERs)to enhance the operation performance of ADNs based on the policies trained by the MADRL algorithm.Owing to the model-free characteristics and the generalization of deep reinforcement learning,the proposed strategy can still achieve optimization objectives even when applied to similar but unseen environments.Additionally,integrating parameter sharing(PS)and prioritized experience replay(PER)mechanisms substantially improves the strategic performance and scalability.This framework has been tested on modified IEEE 33-bus,IEEE 118-bus,and three-phase unbalanced 123-bus systems.The results demonstrate the significant real-time regulation capabilities of the proposed strategy.
基金supported in part by the State Grid Scientific and Technological Projects of China(No.SGTYHT/21-JS-223)in part by the National Natural Science Foundation of China(No.52277118),in part by the Tianjin Science and Technology Planning Project(No.22ZLGCGX00050)in part by the 67th Postdoctoral Fund and Independent Innovation Fund of Tianjin University in 2021.
文摘The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate independently.Traditional centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is proposed.Firstly,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning schemes.The steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion model.Then,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating simulation.Under the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange requirement.Finally,an SDN with four MGs is conducted considering multiple flexible resources.It shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch capacity.Besides,the annual DG electricity oversteps the maximum active power demand value.