Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions ...Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists.展开更多
Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communicati...Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communication/collaboration between subMOPs,which limits its use in complex optimisation scenarios.This paper extends the M2M framework to develop a unified algorithm for both multi-objective and manyobjective optimisation.Through bilevel decomposition,an MOP is divided into multiple subMOPs at upper level,each of which is further divided into a number of single-objective subproblems at lower level.Neighbouring subMOPs are allowed to share some subproblems so that the knowledge gained from solving one subMOP can be transferred to another,and eventually to all the subMOPs.The bilevel decomposition is readily combined with some new mating selection and population update strategies,leading to a high-performance algorithm that competes effectively against a number of state-of-the-arts studied in this paper for both multiand many-objective optimisation.Parameter analysis and component analysis have been also carried out to further justify the proposed algorithm.展开更多
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf...The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.展开更多
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so...Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.展开更多
The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimizati...The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimization algorithm is proposed to tackle such an expensive optimization problem.The multi-variable and multi-objective optimization are conducted with a new flexible multi-objective infill criterion.In addition,the search direction is determined by the multi-model ensemble assisted evolutionary algorithm and the feature extraction by the principal component analysis is used to reduce the dimension of optimization variables.First,the proposed algorithm and other two optimization algorithms which prevail in fan optimizations were compared by using test functions.With the same number of objective function evaluations,the proposed algorithm shows a fast convergency rate on finding the optimal objective function values.Then,this algorithm was used to optimize the rotor and stator blades of a large axial fan,with the efficiencies as the objectives at three flow rates,the high,the design and the low flow rate.Forty-two variables were included in the optimization process.The results show that compared with the prototype fan,the total pressure efficiencies of the optimized fan at the high,the design and the low flow rate were increased by 3.35%,3.07%and 2.89%,respectively,after CFD simulations for 500 fan candidates with the constraint for the design pressure.The optimization results validate the effectiveness and feasibility of the proposed algorithm.展开更多
Maintaining population diversity is an important task in the multimodal multi-objective optimization.Although the zoning search(ZS)can improve the diversity in the decision space,assigning the same computational costs...Maintaining population diversity is an important task in the multimodal multi-objective optimization.Although the zoning search(ZS)can improve the diversity in the decision space,assigning the same computational costs to each search subspace may be wasteful when computational resources are limited,especially on imbalanced problems.To alleviate the above-mentioned issue,a zoning search with adaptive resource allocating(ZS-ARA)method is proposed in the current study.In the proposed ZS-ARA,the entire search space is divided into many subspaces to preserve the diversity in the decision space and to reduce the problem complexity.Moreover,the computational resources can be automatically allocated among all the subspaces.The ZS-ARA is compared with seven algorithms on two different types of multimodal multi-objective problems(MMOPs),namely,balanced and imbalanced MMOPs.The results indicate that,similarly to the ZS,the ZS-ARA achieves high performance with the balanced MMOPs.Also,it can greatly assist a“regular”algorithm in improving its performance on the imbalanced MMOPs,and is capable of allocating the limited computational resources dynamically.展开更多
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro...In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.展开更多
This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It cons...This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.展开更多
Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model base...Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment.展开更多
Today's volatile market conditions in electronic industries have lead to a new production system,seru(which is the Japanese pronunciation for cell),and has been widely implemented in hundreds of Japanese and other...Today's volatile market conditions in electronic industries have lead to a new production system,seru(which is the Japanese pronunciation for cell),and has been widely implemented in hundreds of Japanese and other Asia companies.In particular,the rotating seru has been widely implemented,where workers are fully cross-trained with the same skill level but may be different on the proficiency of performing tasks.The rotating seru production problem,which determines the rotating sequence of workers as well as the assembling sequence of jobs,is difficult to solve due to conflicting objectives and dynamic release of customer demands.To solve this problem,we propose a dynamic multiobjective NSGA-II based memetic algorithm.Moreover,to preserve desirable population diversity and improve the searching efficiency,we propose different problem-specific evolutionary strategies.Finally,we test the performance of our proposed memetic algorithm with other state-of-the-art multi-objective evolutionary algorithms and demonstrate the effectiveness of our proposed algorithm.展开更多
Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an...Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an appropriate number of DGs and their capacity along with the best location.In this paper,the improved decomposition based evolutionary algorithm(I-DBEA)is used for the selection of optimal number,capacity and site of DG in order to minimize real power losses and voltage deviation,and to maximize the voltage stability index.The proposed I-DBEA technique has the ability to incorporate non-linear,nonconvex and mixed-integer variable problems and it is independent of local extrema trappings.In order to validate the effectiveness of the proposed technique,IEEE 33-bus,69-bus,and 119-bus standard radial distribution networks are considered.Furthermore,the choice of optimal number of DGs in the distribution system is also investigated.The simulation results of the proposed method are compared with the existing methods.The comparison shows that the proposed method has the ability to get the multi-objective optimization of different conflicting objective functions with global optimal values along with the smallest size of DG.展开更多
为更加合理灵活地评估风光水多重不确定性给优化调度带来的风险性,基于分类机会约束提出了风光水出力高估/低估功率偏差置信风险量化计算方法,并计及多重不确定性置信风险构建经济/风险多目标优化调度模型。同时,充分利用智能电网可控资...为更加合理灵活地评估风光水多重不确定性给优化调度带来的风险性,基于分类机会约束提出了风光水出力高估/低估功率偏差置信风险量化计算方法,并计及多重不确定性置信风险构建经济/风险多目标优化调度模型。同时,充分利用智能电网可控资源,通过优化控制发电机出力、变压器变比和无功补偿容量等,实现在满足安全约束下系统运行成本最低和风险性最小的源网协调优化调度目标。为实现对所提复杂模型的高效求解,将高效优势可行解约束处理方法与具有动态资源分配策略的分解多目标进化算法相结合,提出了一种新型的多目标动态分解进化算法;并采用改进的逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)法自动提取最优折衷解以实现多目标优化调度决策。算例分析证明了所提方法的有效性和可行性。展开更多
Purpose–This is the first part of a two-part paper.The purpose of this paper is to report on methods that use the Response Surface Methodology(RSM)to investigate an Evolutionary Algorithm(EA)and memory-based approach...Purpose–This is the first part of a two-part paper.The purpose of this paper is to report on methods that use the Response Surface Methodology(RSM)to investigate an Evolutionary Algorithm(EA)and memory-based approach referred to as McBAR–the Mapping of Task IDs for Centroid-Based Adaptation with Random Immigrants.Some of the methods are useful for investigating the performance(solution-search abilities)of techniques(comprised of McBAR and other selected EAbased techniques)for solving some multi-objective dynamic resource-constrained project scheduling problems with time-varying number of tasks.Design/methodology/approach–The RSM is applied to:determine some EA parameters of the techniques,develop models of the performance of each technique,legitimize some algorithmic components of McBAR,manifest the relative performance of McBAR over the other techniques and determine the resiliency of McBAR against changes in the environment.Findings–The results of applying the methods are explored in the second part of this work.Originality/value–The models are composite and characterize an EA memory-based technique.Further,the resiliency of techniques is determined by applying Lagrange optimization that involves the models.展开更多
Purpose–This is the second part of a two-part paper.The purpose of this paper is to report the results on the application of the methods that use the Response Surface Methodology to investigate an evolutionary algori...Purpose–This is the second part of a two-part paper.The purpose of this paper is to report the results on the application of the methods that use the Response Surface Methodology to investigate an evolutionary algorithm(EA)and memory-based approach referred to as McBAR–the Mapping of Task IDs for Centroid-Based Adaptation with Random Immigrants.Design/methodology/approach–The methods applied in this paper are fully explained in the first part.They are utilized to investigate the performances(ability to determine solutions to problems)of techniques composed of McBAR and some EA-based techniques for solving some multi-objective dynamic resource-constrained project scheduling problems with a variable number of tasks.Findings–The main results include the following:first,some algorithmic components of McBAR are legitimate;second,the performance of McBAR is generally superior to those of the other techniques after increase in the number of tasks in each of the above-mentioned problems;and third,McBAR has the most resilient performance among the techniques against changes in the environment that set the problems.Originality/value–This paper is novel for investigating the enumerated results.展开更多
基金partially supported by the National Natural Science Foundation of China(41930644,61972439)the Collaborative Innovation Project of Anhui Province(GXXT-2022-093)the Key Program in the Youth Elite Support Plan in Universities of Anhui Province(gxyqZD2019010)。
文摘Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists.
基金supported in part by the National Natural Science Foundation of China (62376288,U23A20347)the Engineering and Physical Sciences Research Council of UK (EP/X041239/1)the Royal Society International Exchanges Scheme of UK (IEC/NSFC/211404)。
文摘Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communication/collaboration between subMOPs,which limits its use in complex optimisation scenarios.This paper extends the M2M framework to develop a unified algorithm for both multi-objective and manyobjective optimisation.Through bilevel decomposition,an MOP is divided into multiple subMOPs at upper level,each of which is further divided into a number of single-objective subproblems at lower level.Neighbouring subMOPs are allowed to share some subproblems so that the knowledge gained from solving one subMOP can be transferred to another,and eventually to all the subMOPs.The bilevel decomposition is readily combined with some new mating selection and population update strategies,leading to a high-performance algorithm that competes effectively against a number of state-of-the-arts studied in this paper for both multiand many-objective optimisation.Parameter analysis and component analysis have been also carried out to further justify the proposed algorithm.
文摘The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(60073043,70071042,60133010)
文摘Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.
基金support of National Science and Technology Major Project(2017-11-0007-0021)。
文摘The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimization algorithm is proposed to tackle such an expensive optimization problem.The multi-variable and multi-objective optimization are conducted with a new flexible multi-objective infill criterion.In addition,the search direction is determined by the multi-model ensemble assisted evolutionary algorithm and the feature extraction by the principal component analysis is used to reduce the dimension of optimization variables.First,the proposed algorithm and other two optimization algorithms which prevail in fan optimizations were compared by using test functions.With the same number of objective function evaluations,the proposed algorithm shows a fast convergency rate on finding the optimal objective function values.Then,this algorithm was used to optimize the rotor and stator blades of a large axial fan,with the efficiencies as the objectives at three flow rates,the high,the design and the low flow rate.Forty-two variables were included in the optimization process.The results show that compared with the prototype fan,the total pressure efficiencies of the optimized fan at the high,the design and the low flow rate were increased by 3.35%,3.07%and 2.89%,respectively,after CFD simulations for 500 fan candidates with the constraint for the design pressure.The optimization results validate the effectiveness and feasibility of the proposed algorithm.
基金This work was partially supported by the Shandong Joint Fund of the National Nature Science Foundation of China(U2006228)the National Nature Science Foundation of China(61603244).
文摘Maintaining population diversity is an important task in the multimodal multi-objective optimization.Although the zoning search(ZS)can improve the diversity in the decision space,assigning the same computational costs to each search subspace may be wasteful when computational resources are limited,especially on imbalanced problems.To alleviate the above-mentioned issue,a zoning search with adaptive resource allocating(ZS-ARA)method is proposed in the current study.In the proposed ZS-ARA,the entire search space is divided into many subspaces to preserve the diversity in the decision space and to reduce the problem complexity.Moreover,the computational resources can be automatically allocated among all the subspaces.The ZS-ARA is compared with seven algorithms on two different types of multimodal multi-objective problems(MMOPs),namely,balanced and imbalanced MMOPs.The results indicate that,similarly to the ZS,the ZS-ARA achieves high performance with the balanced MMOPs.Also,it can greatly assist a“regular”algorithm in improving its performance on the imbalanced MMOPs,and is capable of allocating the limited computational resources dynamically.
基金supported by the National Key R&D Plan(2020YFB1712902)the National Natural Science Foundation of China(52075036).
文摘In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.
基金supported by the National Natural Science Fund for Distinguished Young Scholars of China(No.61525304)the National Natural Science Foundation of China(No.61873328)。
文摘This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.
文摘Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment.
基金We thank Professor Wei Jiang and two anonymous reviewers for their suggestions and comments.Feng Liu and Jiafu Tang were supported by the NSFC[grant numbers 71872033,71420107028]Kan Fang was supported by the NSFC[grant number 71701144]+1 种基金Yong Yin was supported by the Omron research fund.Feng Liu was also supported by the 2020 LiaoNing Revitalization Talents Program(XLYC2007061)the Dalian High Level Talents Innovation Support Plan(2019RQ107).
文摘Today's volatile market conditions in electronic industries have lead to a new production system,seru(which is the Japanese pronunciation for cell),and has been widely implemented in hundreds of Japanese and other Asia companies.In particular,the rotating seru has been widely implemented,where workers are fully cross-trained with the same skill level but may be different on the proficiency of performing tasks.The rotating seru production problem,which determines the rotating sequence of workers as well as the assembling sequence of jobs,is difficult to solve due to conflicting objectives and dynamic release of customer demands.To solve this problem,we propose a dynamic multiobjective NSGA-II based memetic algorithm.Moreover,to preserve desirable population diversity and improve the searching efficiency,we propose different problem-specific evolutionary strategies.Finally,we test the performance of our proposed memetic algorithm with other state-of-the-art multi-objective evolutionary algorithms and demonstrate the effectiveness of our proposed algorithm.
文摘Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an appropriate number of DGs and their capacity along with the best location.In this paper,the improved decomposition based evolutionary algorithm(I-DBEA)is used for the selection of optimal number,capacity and site of DG in order to minimize real power losses and voltage deviation,and to maximize the voltage stability index.The proposed I-DBEA technique has the ability to incorporate non-linear,nonconvex and mixed-integer variable problems and it is independent of local extrema trappings.In order to validate the effectiveness of the proposed technique,IEEE 33-bus,69-bus,and 119-bus standard radial distribution networks are considered.Furthermore,the choice of optimal number of DGs in the distribution system is also investigated.The simulation results of the proposed method are compared with the existing methods.The comparison shows that the proposed method has the ability to get the multi-objective optimization of different conflicting objective functions with global optimal values along with the smallest size of DG.
文摘为更加合理灵活地评估风光水多重不确定性给优化调度带来的风险性,基于分类机会约束提出了风光水出力高估/低估功率偏差置信风险量化计算方法,并计及多重不确定性置信风险构建经济/风险多目标优化调度模型。同时,充分利用智能电网可控资源,通过优化控制发电机出力、变压器变比和无功补偿容量等,实现在满足安全约束下系统运行成本最低和风险性最小的源网协调优化调度目标。为实现对所提复杂模型的高效求解,将高效优势可行解约束处理方法与具有动态资源分配策略的分解多目标进化算法相结合,提出了一种新型的多目标动态分解进化算法;并采用改进的逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)法自动提取最优折衷解以实现多目标优化调度决策。算例分析证明了所提方法的有效性和可行性。
文摘Purpose–This is the first part of a two-part paper.The purpose of this paper is to report on methods that use the Response Surface Methodology(RSM)to investigate an Evolutionary Algorithm(EA)and memory-based approach referred to as McBAR–the Mapping of Task IDs for Centroid-Based Adaptation with Random Immigrants.Some of the methods are useful for investigating the performance(solution-search abilities)of techniques(comprised of McBAR and other selected EAbased techniques)for solving some multi-objective dynamic resource-constrained project scheduling problems with time-varying number of tasks.Design/methodology/approach–The RSM is applied to:determine some EA parameters of the techniques,develop models of the performance of each technique,legitimize some algorithmic components of McBAR,manifest the relative performance of McBAR over the other techniques and determine the resiliency of McBAR against changes in the environment.Findings–The results of applying the methods are explored in the second part of this work.Originality/value–The models are composite and characterize an EA memory-based technique.Further,the resiliency of techniques is determined by applying Lagrange optimization that involves the models.
文摘Purpose–This is the second part of a two-part paper.The purpose of this paper is to report the results on the application of the methods that use the Response Surface Methodology to investigate an evolutionary algorithm(EA)and memory-based approach referred to as McBAR–the Mapping of Task IDs for Centroid-Based Adaptation with Random Immigrants.Design/methodology/approach–The methods applied in this paper are fully explained in the first part.They are utilized to investigate the performances(ability to determine solutions to problems)of techniques composed of McBAR and some EA-based techniques for solving some multi-objective dynamic resource-constrained project scheduling problems with a variable number of tasks.Findings–The main results include the following:first,some algorithmic components of McBAR are legitimate;second,the performance of McBAR is generally superior to those of the other techniques after increase in the number of tasks in each of the above-mentioned problems;and third,McBAR has the most resilient performance among the techniques against changes in the environment that set the problems.Originality/value–This paper is novel for investigating the enumerated results.