期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Tourism Route Recommendation Based on A Multi-Objective Evolutionary Algorithm Using Two-Stage Decomposition and Pareto Layering 被引量:1
1
作者 Xiaoyao Zheng Baoting Han Zhen Ni 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期486-500,共15页
Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions ... Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists. 展开更多
关键词 evolutionary algorithm multi-objective optimization Pareto optimization tourism route recommendation two-stage decomposition
下载PDF
Evolutionary Multi/Many-Objective Optimisation via Bilevel Decomposition
2
作者 Shouyong Jiang Jinglei Guo +1 位作者 Yong Wang Shengxiang Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1973-1986,共14页
Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communicati... Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communication/collaboration between subMOPs,which limits its use in complex optimisation scenarios.This paper extends the M2M framework to develop a unified algorithm for both multi-objective and manyobjective optimisation.Through bilevel decomposition,an MOP is divided into multiple subMOPs at upper level,each of which is further divided into a number of single-objective subproblems at lower level.Neighbouring subMOPs are allowed to share some subproblems so that the knowledge gained from solving one subMOP can be transferred to another,and eventually to all the subMOPs.The bilevel decomposition is readily combined with some new mating selection and population update strategies,leading to a high-performance algorithm that competes effectively against a number of state-of-the-arts studied in this paper for both multiand many-objective optimisation.Parameter analysis and component analysis have been also carried out to further justify the proposed algorithm. 展开更多
关键词 Bilevel decomposition evolutionary algorithm many-objective optimisation multi-objective optimisation
下载PDF
Multi-objective integrated optimization based on evolutionary strategy with a dynamic weighting schedule 被引量:2
3
作者 傅武军 朱昌明 叶庆泰 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期204-207,共4页
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf... The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method. 展开更多
关键词 integrated design multi-objective optimization evolutionary strategy dynamic weighting schedule suspension system
下载PDF
A Multi-Objective Optimal Evolutionary Algorithm Based on Tree-Ranking 被引量:1
4
作者 Shi Chuan, Kang Li-shan, Li Yan, Yan Zhen-yuState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期207-211,共5页
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so... Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time. 展开更多
关键词 multi-objective optimal problem multi-objective optimal evolutionary algorithm Pareto dominance tree structure dynamic space-compressed mutative operator
下载PDF
Multi-Objective Multi-Variable Large-Size Fan Aerodynamic Optimization by Using Multi-Model Ensemble Optimization Algorithm
5
作者 XIONG Jin GUO Penghua LI Jingyin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期914-930,共17页
The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimizati... The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimization algorithm is proposed to tackle such an expensive optimization problem.The multi-variable and multi-objective optimization are conducted with a new flexible multi-objective infill criterion.In addition,the search direction is determined by the multi-model ensemble assisted evolutionary algorithm and the feature extraction by the principal component analysis is used to reduce the dimension of optimization variables.First,the proposed algorithm and other two optimization algorithms which prevail in fan optimizations were compared by using test functions.With the same number of objective function evaluations,the proposed algorithm shows a fast convergency rate on finding the optimal objective function values.Then,this algorithm was used to optimize the rotor and stator blades of a large axial fan,with the efficiencies as the objectives at three flow rates,the high,the design and the low flow rate.Forty-two variables were included in the optimization process.The results show that compared with the prototype fan,the total pressure efficiencies of the optimized fan at the high,the design and the low flow rate were increased by 3.35%,3.07%and 2.89%,respectively,after CFD simulations for 500 fan candidates with the constraint for the design pressure.The optimization results validate the effectiveness and feasibility of the proposed algorithm. 展开更多
关键词 multi-objective optimization surrogate-assisted evolutionary algorithm axial fan computational fluid dynamics aerodynamic optimization
原文传递
Zoning Search With Adaptive Resource Allocating Method for Balanced and Imbalanced Multimodal Multi-Objective Optimization 被引量:5
6
作者 Qinqin Fan Okan K.Ersoy 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第6期1163-1176,共14页
Maintaining population diversity is an important task in the multimodal multi-objective optimization.Although the zoning search(ZS)can improve the diversity in the decision space,assigning the same computational costs... Maintaining population diversity is an important task in the multimodal multi-objective optimization.Although the zoning search(ZS)can improve the diversity in the decision space,assigning the same computational costs to each search subspace may be wasteful when computational resources are limited,especially on imbalanced problems.To alleviate the above-mentioned issue,a zoning search with adaptive resource allocating(ZS-ARA)method is proposed in the current study.In the proposed ZS-ARA,the entire search space is divided into many subspaces to preserve the diversity in the decision space and to reduce the problem complexity.Moreover,the computational resources can be automatically allocated among all the subspaces.The ZS-ARA is compared with seven algorithms on two different types of multimodal multi-objective problems(MMOPs),namely,balanced and imbalanced MMOPs.The results indicate that,similarly to the ZS,the ZS-ARA achieves high performance with the balanced MMOPs.Also,it can greatly assist a“regular”algorithm in improving its performance on the imbalanced MMOPs,and is capable of allocating the limited computational resources dynamically. 展开更多
关键词 Computational resource allocation decision space decomposition evolutionary computation multimodal multi-objective optimization
下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:2
7
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
下载PDF
Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop Scheduling with Multiprocessor Tasks 被引量:16
8
作者 Enda Jiang Ling Wang Jingjing Wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第5期646-663,共18页
This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It cons... This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D. 展开更多
关键词 distributed hybrid flow shop multiprocessor tasks energy-aware scheduling multi-objective optimization decomposition dynamic adjustment strategy
原文传递
Improved MOEA/D for Dynamic Weapon-Target Assignment Problem 被引量:6
9
作者 Ying Zhang Rennong Yang +1 位作者 Jialiang Zuo Xiaoning Jing 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第6期121-128,共8页
Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model base... Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment. 展开更多
关键词 multi-objective optimization(MOP) dynamic weapon-target assignment(DWTA) multi-objective evolutionary algorithm based on decomposition(MOEA/D) tabu search
下载PDF
Solving the rotating seru production problem with dynamic multi-objective evolutionary algorithms 被引量:2
10
作者 Feng Liu Kan Fang +1 位作者 Jiafu Tang Yong Yin 《Journal of Management Science and Engineering》 2022年第1期48-66,共19页
Today's volatile market conditions in electronic industries have lead to a new production system,seru(which is the Japanese pronunciation for cell),and has been widely implemented in hundreds of Japanese and other... Today's volatile market conditions in electronic industries have lead to a new production system,seru(which is the Japanese pronunciation for cell),and has been widely implemented in hundreds of Japanese and other Asia companies.In particular,the rotating seru has been widely implemented,where workers are fully cross-trained with the same skill level but may be different on the proficiency of performing tasks.The rotating seru production problem,which determines the rotating sequence of workers as well as the assembling sequence of jobs,is difficult to solve due to conflicting objectives and dynamic release of customer demands.To solve this problem,we propose a dynamic multiobjective NSGA-II based memetic algorithm.Moreover,to preserve desirable population diversity and improve the searching efficiency,we propose different problem-specific evolutionary strategies.Finally,we test the performance of our proposed memetic algorithm with other state-of-the-art multi-objective evolutionary algorithms and demonstrate the effectiveness of our proposed algorithm. 展开更多
关键词 Cellular manufacturing ASSEMBLY Rotating seru dynamic multi-objective optimization evolutionary algorithms
原文传递
改进分解进化算法求解动态火力分配多目标优化模型 被引量:14
11
作者 张滢 杨任农 +2 位作者 左家亮 景小宁 何贵波 《兵工学报》 EI CAS CSCD 北大核心 2015年第8期1533-1540,共8页
战前制定合理的火力分配(WTA)方案,可以优化资源配置,用最小的代价获取最大的战场收益。其一,建立了面向多型武器协同进攻作战的动态火力分配(DWTA)多目标优化模型,由多个阶段静态模型构成,各阶段静态模型参数需根据战场态势实时获取;其... 战前制定合理的火力分配(WTA)方案,可以优化资源配置,用最小的代价获取最大的战场收益。其一,建立了面向多型武器协同进攻作战的动态火力分配(DWTA)多目标优化模型,由多个阶段静态模型构成,各阶段静态模型参数需根据战场态势实时获取;其二,重点研究阶段静态模型求解算法。针对模型特点,设计了一种满足资源约束的编码方式,融合禁忌搜索和拥挤距离策略,提出了一种改进分解进化算法。对比实验验证了算法的可行性、快速性和有效性。 展开更多
关键词 兵器科学与技术 多目标优化 动态火力分配 分解进化算法 禁忌搜索
下载PDF
记忆增强的动态多目标分解进化算法 被引量:17
12
作者 刘敏 曾文华 《软件学报》 EI CSCD 北大核心 2013年第7期1571-1588,共18页
现实世界中的一些多目标优化问题经常受动态环境影响而不断发生变化,要求优化算法不断地及时跟踪时变的Pareto最优解集.提出了一种记忆增强的动态多目标分解进化算法.将动态多目标优化问题分解为若干个动态单目标优化子问题并同时优化... 现实世界中的一些多目标优化问题经常受动态环境影响而不断发生变化,要求优化算法不断地及时跟踪时变的Pareto最优解集.提出了一种记忆增强的动态多目标分解进化算法.将动态多目标优化问题分解为若干个动态单目标优化子问题并同时优化这些子问题,以便快速逼近Pareto最优解集.给出了一个改进的环境变化检测算子,以便更好地检测环境变化.设计了一种基于子问题的串式记忆方法,利用过去类似环境下搜索到的最优解来有效地响应新的环境变化.在8个标准的测试问题上,将新算法与其他3种记忆增强的动态进化多目标优化算法进行了实验比较.结果表明,新算法比其他3种算法具有更快的运行速度、更强的记忆能力与鲁棒性能,并且新算法所获得的解集还具有更好的收敛性与分布性. 展开更多
关键词 进化计算 多目标优化 动态环境 记忆方法 分解
下载PDF
Optimal Site and Size of Distributed Generation Allocation in Radial Distribution Network Using Multi-objective Optimization 被引量:4
13
作者 Aamir Ali M.U.Keerio J.A.Laghari 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第2期404-415,共12页
Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an... Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an appropriate number of DGs and their capacity along with the best location.In this paper,the improved decomposition based evolutionary algorithm(I-DBEA)is used for the selection of optimal number,capacity and site of DG in order to minimize real power losses and voltage deviation,and to maximize the voltage stability index.The proposed I-DBEA technique has the ability to incorporate non-linear,nonconvex and mixed-integer variable problems and it is independent of local extrema trappings.In order to validate the effectiveness of the proposed technique,IEEE 33-bus,69-bus,and 119-bus standard radial distribution networks are considered.Furthermore,the choice of optimal number of DGs in the distribution system is also investigated.The simulation results of the proposed method are compared with the existing methods.The comparison shows that the proposed method has the ability to get the multi-objective optimization of different conflicting objective functions with global optimal values along with the smallest size of DG. 展开更多
关键词 Distribution system distributed generation multi-objective optimization active power loss improved decomposition based evolutionary algorithm(I-DBEA)
原文传递
考虑风光水多重不确定性置信风险的多目标动态分解优化调度 被引量:8
14
作者 孙惠娟 巩磊 +1 位作者 彭春华 温泽之 《电网技术》 EI CSCD 北大核心 2022年第9期3416-3425,共10页
为更加合理灵活地评估风光水多重不确定性给优化调度带来的风险性,基于分类机会约束提出了风光水出力高估/低估功率偏差置信风险量化计算方法,并计及多重不确定性置信风险构建经济/风险多目标优化调度模型。同时,充分利用智能电网可控资... 为更加合理灵活地评估风光水多重不确定性给优化调度带来的风险性,基于分类机会约束提出了风光水出力高估/低估功率偏差置信风险量化计算方法,并计及多重不确定性置信风险构建经济/风险多目标优化调度模型。同时,充分利用智能电网可控资源,通过优化控制发电机出力、变压器变比和无功补偿容量等,实现在满足安全约束下系统运行成本最低和风险性最小的源网协调优化调度目标。为实现对所提复杂模型的高效求解,将高效优势可行解约束处理方法与具有动态资源分配策略的分解多目标进化算法相结合,提出了一种新型的多目标动态分解进化算法;并采用改进的逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)法自动提取最优折衷解以实现多目标优化调度决策。算例分析证明了所提方法的有效性和可行性。 展开更多
关键词 可再生能源 机组出力高估/低估 置信风险 优化调度 多目标动态分解进化
下载PDF
动态弹塑性扭转问题的区域分解方法
15
作者 吴娟 丁睿 李荣军 《苏州大学学报(自然科学版)》 CAS 2008年第4期24-27,32,共5页
研究了动态弹塑性扭转问题描述的发展型变分不等式的区域分解方法,给出了方法的实现步骤及收敛性结果,实现了一维、二维数值算例,说明了方法的有效性.
关键词 动态弹塑性扭转问题 区域分解法 发展型变分不等式
下载PDF
基于记忆策略的动态分解约束多目标进化算法
16
作者 陈创明 温洁嫦 《汕头大学学报(自然科学版)》 2022年第1期56-64,共9页
针对现有面向多目标优化问题的约束处理方法存在求解效率不足,基于分解策略的多目标进化算法受到约束限制导致求解性能低的问题,提出一种基于记忆策略的动态分解约束多目标进化算法.本文首先引入具有记忆功能的归档集,改进基于短暂忽略... 针对现有面向多目标优化问题的约束处理方法存在求解效率不足,基于分解策略的多目标进化算法受到约束限制导致求解性能低的问题,提出一种基于记忆策略的动态分解约束多目标进化算法.本文首先引入具有记忆功能的归档集,改进基于短暂忽略非容许解的约束处理方法,提高算法的求解鲁棒性.然后结合基于分解的多目标进化算法,设计一种动态分配搜索资源的策略,提高算法的寻优能力.最后将设计的算法用于求解约束多目标基准测试集和1个工程问题,仿真结果表明,本文所提出算法的性能优于对比算法.算法具有有效性和可行性,求解约束多目标优化问题具有较好的性能. 展开更多
关键词 多目标优化 约束处理方法 进化算法 动态分解
下载PDF
Implicit memory-based technique in solving dynamic scheduling problems through Response Surface Methodology–Part I Model and method
17
作者 Manuel Blanco Abello Zbigniew Michalewicz 《International Journal of Intelligent Computing and Cybernetics》 EI 2014年第2期114-142,共29页
Purpose–This is the first part of a two-part paper.The purpose of this paper is to report on methods that use the Response Surface Methodology(RSM)to investigate an Evolutionary Algorithm(EA)and memory-based approach... Purpose–This is the first part of a two-part paper.The purpose of this paper is to report on methods that use the Response Surface Methodology(RSM)to investigate an Evolutionary Algorithm(EA)and memory-based approach referred to as McBAR–the Mapping of Task IDs for Centroid-Based Adaptation with Random Immigrants.Some of the methods are useful for investigating the performance(solution-search abilities)of techniques(comprised of McBAR and other selected EAbased techniques)for solving some multi-objective dynamic resource-constrained project scheduling problems with time-varying number of tasks.Design/methodology/approach–The RSM is applied to:determine some EA parameters of the techniques,develop models of the performance of each technique,legitimize some algorithmic components of McBAR,manifest the relative performance of McBAR over the other techniques and determine the resiliency of McBAR against changes in the environment.Findings–The results of applying the methods are explored in the second part of this work.Originality/value–The models are composite and characterize an EA memory-based technique.Further,the resiliency of techniques is determined by applying Lagrange optimization that involves the models. 展开更多
关键词 evolutionary computation Genetic Algorithms multi-objective optimization Response Surface Methodology SCHEDULING Resource-constrained project dynamic environments
原文传递
Implicit memory-based technique in solving dynamic scheduling problems through Response Surface Methodology–PartⅡExperiments and analysis
18
作者 Manuel Blanco Abello Zbigniew Michalewicz 《International Journal of Intelligent Computing and Cybernetics》 EI 2014年第2期143-174,共32页
Purpose–This is the second part of a two-part paper.The purpose of this paper is to report the results on the application of the methods that use the Response Surface Methodology to investigate an evolutionary algori... Purpose–This is the second part of a two-part paper.The purpose of this paper is to report the results on the application of the methods that use the Response Surface Methodology to investigate an evolutionary algorithm(EA)and memory-based approach referred to as McBAR–the Mapping of Task IDs for Centroid-Based Adaptation with Random Immigrants.Design/methodology/approach–The methods applied in this paper are fully explained in the first part.They are utilized to investigate the performances(ability to determine solutions to problems)of techniques composed of McBAR and some EA-based techniques for solving some multi-objective dynamic resource-constrained project scheduling problems with a variable number of tasks.Findings–The main results include the following:first,some algorithmic components of McBAR are legitimate;second,the performance of McBAR is generally superior to those of the other techniques after increase in the number of tasks in each of the above-mentioned problems;and third,McBAR has the most resilient performance among the techniques against changes in the environment that set the problems.Originality/value–This paper is novel for investigating the enumerated results. 展开更多
关键词 evolutionary computation multi-objective optimization Genetic algorithms Response surface methodology dynamic environments Resource-constrained project scheduling
原文传递
基于向量角分解的高维多目标进化算法 被引量:3
19
作者 赵玉亮 宋业新 康丽文 《控制与决策》 EI CSCD 北大核心 2021年第3期761-768,共8页
选择是进化的主要驱动力,也是多目标进化算法的关键特征,然而,在处理高维多目标问题时,随着目标维数的增加种群的收敛性和分布性的冲突加剧,传统多目标进化算法中的选择算子已难以有效地维持种群的收敛性与分布性之间的平衡.针对该问题... 选择是进化的主要驱动力,也是多目标进化算法的关键特征,然而,在处理高维多目标问题时,随着目标维数的增加种群的收敛性和分布性的冲突加剧,传统多目标进化算法中的选择算子已难以有效地维持种群的收敛性与分布性之间的平衡.针对该问题,提出一种基于向量角分解的高维多目标进化算法.首先,将个体本身作为参考向量,利用目标向量之间的夹角作为个体的相似度测度估计种群分布性,以减轻算法预先指定权重向量的负担;然后,利用成绩标量函数作为个体的收敛性测度,该收敛测度在引导种群走向Pareto最优前沿方面发挥着重要作用;最后,提出一种基于向量角分解的精英选择策略,其在环境选择过程中利用向量角信息将目标空间动态分解,并利用成绩标量函数从分布性较好的区域中挑选较好的个体进入下一代,能够动态地平衡种群的收敛性和分布性.对比实验结果表明,所提出算法具有较强的竞争力,其在保持种群分布性的同时具有足够的选择压力,能够有效地引导高维目标空间的搜索. 展开更多
关键词 高维多目标进化 向量角 成绩标量函数 动态分解 精英选择策略
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部