期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于改进MOEA/D的模糊柔性作业车间调度算法
1
作者 郑锦灿 邵立珍 雷雪梅 《计算机工程》 CAS CSCD 北大核心 2024年第6期336-345,共10页
针对实际生产车间中加工时间的不确定性,将加工时间以模糊数的形式表示,建立以最小化模糊最大完工时间和模糊总材料消耗为优化目标的多目标模糊柔性作业车间调度问题数学模型,提出一种改进基于分解的多目标进化算法(IMOEA/D)进行求解。... 针对实际生产车间中加工时间的不确定性,将加工时间以模糊数的形式表示,建立以最小化模糊最大完工时间和模糊总材料消耗为优化目标的多目标模糊柔性作业车间调度问题数学模型,提出一种改进基于分解的多目标进化算法(IMOEA/D)进行求解。该算法基于机器和工序两层编码并采用混合的初始化策略提高初始种群的质量,利用插入式贪婪解码策略对机器的选择进行解码,缩短总加工时间;采用基于邻域和外部存档的选择操作结合改进的交叉变异算子进行种群更新,提高搜索效率;设置邻域搜索的启动条件,并基于4种邻域动作进行变邻域搜索,提高局部搜索能力;通过田口实验设计方法研究关键参数对算法性能的影响,同时得到算法的最优性能参数。在Xu 1~Xu 2、Lei 1~Lei 4和Remanu 1~Remanu 4测试集上将所提算法与其他算法进行对比,结果表明,IMOEA/D算法的解集数量和目标函数值均较优,在Lei 2算例获得的解集个数为对比算法的2倍以上。 展开更多
关键词 模糊柔性作业车间调度问题 基于分解的多目标进化算法 混合初始化 选择策略 邻域搜索
下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:2
2
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
下载PDF
超参数自适应的MOEA/D-DE算法在翼型气动隐身优化中的应用 被引量:1
3
作者 王培君 夏露 +1 位作者 栾伟达 陈会强 《航空工程进展》 CSCD 2023年第3期50-60,共11页
MOEA/D-DE算法易于实现,被广泛应用于处理多目标优化问题,但其超参数对算法性能影响较大。基于MOEA/D-DE算法框架,利用Sobol全局灵敏度分析方法对差分进化算子中的交叉控制参数进行改进,使用莱维飞行机制控制比例因子,使算法中的超参数... MOEA/D-DE算法易于实现,被广泛应用于处理多目标优化问题,但其超参数对算法性能影响较大。基于MOEA/D-DE算法框架,利用Sobol全局灵敏度分析方法对差分进化算子中的交叉控制参数进行改进,使用莱维飞行机制控制比例因子,使算法中的超参数拥有自适应能力,得到超参数自适应的MOEA/D-DE算法——MOEA/D-DEAH算法;对MOEA/D-DEAH算法、不同超参数设置的MOEA/D-DE算法和NSGAⅡ算法进行函数测试和翼型气动隐身优化算例对比。结果表明:MOEA/D-DEAH算法性能良好,具有较强的鲁棒性,气动隐身优化效果也比其他算法更好。 展开更多
关键词 多目标优化算法 基于分解的多目标优化算法(moea/d) 超参数 灵敏度分析 气动隐身优化 差分进化算子
下载PDF
基于改进MOEA/D的钢铁多介质能源计划优化 被引量:1
4
作者 欧阳洪才 吴定会 +1 位作者 范俊岩 汪晶 《系统仿真学报》 CAS CSCD 北大核心 2023年第3期568-578,共11页
针对多介质钢铁能源计划模型存在变量较多、约束复杂和模型求解难度高等问题,提出基于自适应邻域的改进MOEA/D(decomposition-based multi-objective evolutionary algorithm)实现多介质能源计划优化。考虑分时电价特性和煤气柜的缓冲作... 针对多介质钢铁能源计划模型存在变量较多、约束复杂和模型求解难度高等问题,提出基于自适应邻域的改进MOEA/D(decomposition-based multi-objective evolutionary algorithm)实现多介质能源计划优化。考虑分时电价特性和煤气柜的缓冲作用,构建以最小化运行成本和总能耗的目标函数,设计能源介质供需和工序饱和度等模型约束;基于能源产耗规则的解码方法确定目标值,定义归一化的切比雪夫聚合函数和种群进化程度的自适应邻域更新,设计改进MOEA/D的能源计划优化算法。仿真对比实验验证了改进MOEA/D有效实现能源计划优化,提高解的收敛性,降低运行成本1.3%和能耗1.2%。 展开更多
关键词 能源计划 多目标 能耗 moea/d 邻域更新
下载PDF
改进自适应MOEA/D算法的楼宇负荷优化调度 被引量:7
5
作者 易灵芝 林佳豪 +2 位作者 刘建康 罗显光 李旺 《计算机工程与应用》 CSCD 北大核心 2022年第2期295-302,共8页
针对负荷侧用户用电电费、新能源消纳率和用电峰谷差等问题,提出了一种改进的自适应基于分解的多目标进化算法,进行楼宇微电网签约住户可控负荷优化调度;通过分析负荷的用电特性,将用电负荷分为五类并分类建立数学模型、优化目标函数和... 针对负荷侧用户用电电费、新能源消纳率和用电峰谷差等问题,提出了一种改进的自适应基于分解的多目标进化算法,进行楼宇微电网签约住户可控负荷优化调度;通过分析负荷的用电特性,将用电负荷分为五类并分类建立数学模型、优化目标函数和约束条件;将广义分解与均匀分配相结合产生新的自适应权重向量使算法非支配解更接近真实帕累托前沿;采用历史经验的思想通过计数SBX和DE两种交叉算子对外部存档的贡献率,运用轮盘赌的方式实现自适应选择策略;通过特性约束条件映射对产生的子代点进行修正,间接地扩大了算法搜索空间,提高了种群多样性。通过测试函数验证了改进的AWS-MOEA/D算法的收敛性和优越性;在某小区楼宇住户调度仿真实验结果表明,所改进的算法在调度后能节省更多的电费,并有效地提高了新能源消纳率。 展开更多
关键词 楼宇微电网 自适应选择策略 自适应权重向量 基于分解的多目标进化算法(moea/d) 自动需求响应
下载PDF
基于自适应邻域策略的改进型MOEA/D算法 被引量:2
6
作者 耿焕同 韩伟民 +1 位作者 丁洋洋 周山胜 《计算机工程》 CAS CSCD 北大核心 2019年第5期161-168,共8页
为避免传统MOEA/D算法使用固定领域规模易造成种群进化效率降低的情况,提出一种基于自适应邻域策略的改进算法。设计一种能够反映子问题进化幅度和种群进化状态的判断机制。针对进化过程中的收敛性和分布性需求,提出基于进化状态判断的... 为避免传统MOEA/D算法使用固定领域规模易造成种群进化效率降低的情况,提出一种基于自适应邻域策略的改进算法。设计一种能够反映子问题进化幅度和种群进化状态的判断机制。针对进化过程中的收敛性和分布性需求,提出基于进化状态判断的自适应邻域策略,从而根据种群和子问题的进化状态设定不同的邻域规模。使用WFG系列测试函数进行实验,结果表明,该算法能有效平衡进化过程中种群的收敛性与分布性,提高解集的整体性能。 展开更多
关键词 基于分解的多目标进化算法 邻域更新能力 进化状态 判断机制 自适应邻域策略
下载PDF
一种基于新型差分进化模型的MOEA/D改进算法 被引量:2
7
作者 耿焕同 周利发 +1 位作者 丁洋洋 周山胜 《计算机工程与应用》 CSCD 北大核心 2019年第8期138-146,263,共10页
针对MOEA/D算法中差分进化操作收敛精度不高且速度较慢的不足,提出了一种综合基于可控支配域的向量差生成策略和基于主成分的动态缩放因子的新型差分进化模型,均衡显性与隐性搜索引导;并实现了一种基于新型差分进化模型的MOEA/D改进算法... 针对MOEA/D算法中差分进化操作收敛精度不高且速度较慢的不足,提出了一种综合基于可控支配域的向量差生成策略和基于主成分的动态缩放因子的新型差分进化模型,均衡显性与隐性搜索引导;并实现了一种基于新型差分进化模型的MOEA/D改进算法(MOEA/D-iDE)。新型差分进化是借助基于可控支配域的非支配排序对邻域进行分层,根据分层信息生成与不同进化阶段相匹配的向量差,实现对种群收敛速度的显性引导;同时对决策空间进行主成分分析,动态调整差分进化缩放因子,实现对种群收敛精度的隐性引导。实验选取ZDT、DTLZ和WFG等为测试问题,以IGD+,ER作为评价指标,将MOEA/D-iDE算法与6个同类算法进行对比实验,结果表明新算法在保证多样性的同时具有更好的收敛速度与精度,从而验证了新型差分进化模型的有效性。 展开更多
关键词 差分进化 可控支配域 主成分分析 基于分解的多目标进化算法
下载PDF
基于邻域和变异算子组合优化的MOEA/D算法 被引量:6
8
作者 刘璐 郑力明 《计算机工程》 CAS CSCD 北大核心 2017年第3期232-240,共9页
考虑到在基于分解的多目标进化算法(MOEA/D)中,邻域大小与变异算子类型对算法进化过程中的探索模式有不同的影响,提出优化的MOEA/D算法。4种不同大小的邻域范围和4个特性不同的变异策略两两组合构成候选池,利用负反馈原则,在进化过程中... 考虑到在基于分解的多目标进化算法(MOEA/D)中,邻域大小与变异算子类型对算法进化过程中的探索模式有不同的影响,提出优化的MOEA/D算法。4种不同大小的邻域范围和4个特性不同的变异策略两两组合构成候选池,利用负反馈原则,在进化过程中以较高概率从候选池中选择表现更优的组合。实验结果表明,该算法鲁棒性较强,在保证收敛性的同时具有较好的多样性。 展开更多
关键词 邻域范围 变异算子类型 候选池 基于分解的多目标进化算法 多目标优化
下载PDF
MOEA/D聚合函数的二次泛化及其优化性能分析 被引量:2
9
作者 周怡璐 王振友 +1 位作者 李叶紫 李锋 《广东工业大学学报》 CAS 2018年第4期37-44,共8页
基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)是多目标优化算法的一个重要分支,多目标优化的关键问题是如何在算法的收敛性和散布性之间达到良好的平衡.目前主流算法的聚合函数存... 基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)是多目标优化算法的一个重要分支,多目标优化的关键问题是如何在算法的收敛性和散布性之间达到良好的平衡.目前主流算法的聚合函数存在着不同的优缺点,尤其是当使用切比雪夫方法选择个体时,经常出现个体偏离权重现象,个体和权重间得不到很好的粘合.本文基于此提出了一种新的聚合函数方法,提高了MOEA/D的性能.该聚合函数的函数形式为二次函数,种群个体在该函数下的等高线是一条二次曲线(本文称双曲线函数方法,Hyperbola Function Method,HYB),是对目前存在的聚合函数的一种泛化形式.该HYB方法相比PBI(Penalty-based Boundary Intersection)方法更强调收敛性,能更容易地在收敛性散布性之间达到平衡.本文测试了MOKP问题及DTLZ系列等测试函数,并与其他算法进行了实验对比,结果显示HYB方法更稳定有效且种群在收敛速度上有一定的提高. 展开更多
关键词 多目标优化 基于分解的多目标进化算法 聚合函数
下载PDF
Improved MOEA/D for Dynamic Weapon-Target Assignment Problem 被引量:6
10
作者 Ying Zhang Rennong Yang +1 位作者 Jialiang Zuo Xiaoning Jing 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第6期121-128,共8页
Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model base... Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment. 展开更多
关键词 multi-objective optimization(MOP) dynamic weapon-target assignment(dWTA) multi-objective evolutionary algorithm based on decomposition(moea/d) tabu search
下载PDF
基于MOEA/D算法的起重船压载水调配优化
11
作者 周佳 宋磊 《中国舰船研究》 CSCD 北大核心 2021年第4期155-163,共9页
[目的]为提高起重船压载水调配效率,降低调载过程能耗,提出基于分解技术的多目标进化算法(MOEA/D)的起重船压载水调配优化方法。[方法]以各压载水舱调配后的水量为决策变量,以压载水总调配量最小为优化目标,引入浮态等方面的约束,建立... [目的]为提高起重船压载水调配效率,降低调载过程能耗,提出基于分解技术的多目标进化算法(MOEA/D)的起重船压载水调配优化方法。[方法]以各压载水舱调配后的水量为决策变量,以压载水总调配量最小为优化目标,引入浮态等方面的约束,建立起重船压载水调配优化的数学模型;针对因决策变量维数高所引起的求解速度慢和求解质量差的问题,提出调载水舱自适应选择方法,以减少参与调载的水舱数量;针对约束条件处理复杂的问题,将单目标优化转化为多目标优化问题,然后应用MOEA/D算法,从Pareto解集中优选得到起重船压载水调配的最优方案。[结果]对某起重船吊机回转过程的压载水调配实例计算结果显示,基于MOEA/D的算法较NSGA-Ⅱ算法和遗传算法(GA)在满足浮态容差的条件下,参与调载的舱室数量减少了27%,调载水量分别减少了24%和38%,验证了MOEA/D算法的可行性和有效性。[结论]所提的基于MOEA/D的方法可为研究起重船压载水调配优化问题提供一种新的解决思路,能得到较优的压载水调配方案,具有一定的工程应用价值。 展开更多
关键词 起重船 压载水调配 自适应选择 多目标优化 基于分解技术的多目标进化算法
下载PDF
MOQPSO/D算法求解不确定目标分配问题 被引量:1
12
作者 徐浩 董献洲 《火力与指挥控制》 CSCD 北大核心 2021年第12期94-99,共6页
为了增强不确定目标分配对战场态势变化的适应性,提出了一种基于分解的多目标量子行为粒子群算法(MOQPSO/D)的不确定目标分配方法。基于模糊多目标规划方法建立了不确定目标分配模型。以MOEA/D为算法框架,以QPSO算法为寻优手段提出了一... 为了增强不确定目标分配对战场态势变化的适应性,提出了一种基于分解的多目标量子行为粒子群算法(MOQPSO/D)的不确定目标分配方法。基于模糊多目标规划方法建立了不确定目标分配模型。以MOEA/D为算法框架,以QPSO算法为寻优手段提出了一种MOQPSO/D算法。通过粒子编码和非法粒子调整,将MOQPSO/D算法成功应用于求解目标分配模型。仿真结果表明:采用多目标优化方法能有效增强不确定目标分配对战场态势变化的适应性;MOQPSO/D算法在求解目标分配模型时要明显优于MOEA/D及MOEA/D-CD算法。 展开更多
关键词 量子行为粒子群算法 目标分配 不确定 基于分解的多目标进化算法
下载PDF
基于分解的演化多目标优化算法综述 被引量:3
13
作者 高卫峰 刘玲玲 +1 位作者 王振坤 公茂果 《软件学报》 EI CSCD 北大核心 2023年第10期4743-4771,共29页
基于分解的演化多目标优化算法(MOEA/D)的基本思想是将一个多目标优化问题转化成一系列子问题(单目标或者多目标)来进行优化求解.自2007年提出以来, MOEA/D受到了国内外学者的广泛关注,已经成为最具代表性的演化多目标优化算法之一.总... 基于分解的演化多目标优化算法(MOEA/D)的基本思想是将一个多目标优化问题转化成一系列子问题(单目标或者多目标)来进行优化求解.自2007年提出以来, MOEA/D受到了国内外学者的广泛关注,已经成为最具代表性的演化多目标优化算法之一.总结过去13年中关于MOEA/D的一些研究进展,具体内容包括:(1)关于MOEA/D的算法改进;(2) MOEA/D在超多目标优化问题及约束优化问题上的研究;(3) MOEA/D在一些实际问题上的应用.然后,实验对比几个具有代表性的MOEA/D改进算法.最后,指出一些MOEA/D未来的研究方向. 展开更多
关键词 多目标优化 演化算法 分解 moea/d
下载PDF
Optimal Site and Size of Distributed Generation Allocation in Radial Distribution Network Using Multi-objective Optimization 被引量:4
14
作者 Aamir Ali M.U.Keerio J.A.Laghari 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第2期404-415,共12页
Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an... Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an appropriate number of DGs and their capacity along with the best location.In this paper,the improved decomposition based evolutionary algorithm(I-DBEA)is used for the selection of optimal number,capacity and site of DG in order to minimize real power losses and voltage deviation,and to maximize the voltage stability index.The proposed I-DBEA technique has the ability to incorporate non-linear,nonconvex and mixed-integer variable problems and it is independent of local extrema trappings.In order to validate the effectiveness of the proposed technique,IEEE 33-bus,69-bus,and 119-bus standard radial distribution networks are considered.Furthermore,the choice of optimal number of DGs in the distribution system is also investigated.The simulation results of the proposed method are compared with the existing methods.The comparison shows that the proposed method has the ability to get the multi-objective optimization of different conflicting objective functions with global optimal values along with the smallest size of DG. 展开更多
关键词 distribution system distributed generation multi-objective optimization active power loss improved decomposition based evolutionary algorithm(I-dBEA)
原文传递
截击型无人机多目标气动外形优化设计
15
作者 杨德敏 林三春 李易 《航空兵器》 CSCD 北大核心 2023年第3期74-79,共6页
使用无人机碰撞拦截无人机是一种有效且成本适中的反制手段。为提高优化设计效率,本文采用雷诺平均Navier-Stokes方程计算流场,并使用Kriging代理模型和基于分解的多目标进化算法(MOEA/D)针对鸭式布局截击型无人机开展气动外形优化设计... 使用无人机碰撞拦截无人机是一种有效且成本适中的反制手段。为提高优化设计效率,本文采用雷诺平均Navier-Stokes方程计算流场,并使用Kriging代理模型和基于分解的多目标进化算法(MOEA/D)针对鸭式布局截击型无人机开展气动外形优化设计。设计过程中,以航程和最大可用过载为设计目标,将鸭翼纵向位置、主翼扭转角、展弦比和后掠角作为设计变量,以静稳定度和鸭翼最大偏转角为约束,得到了分布均匀的Pareto前沿,优化后的无人机航程与最大可用过载较基准外形分别提升了24.6%和6.4%,证明了该优化方法的有效性。 展开更多
关键词 反无人机 鸭式布局 Kriging代理模型 moea/d 多目标优化
下载PDF
基于进化多目标优化的微服务组合部署与调度策略 被引量:10
16
作者 马武彬 王锐 +3 位作者 王威超 吴亚辉 邓苏 黄宏斌 《系统工程与电子技术》 EI CSCD 北大核心 2020年第1期90-100,共11页
面向微服务实例在不同资源中心的组合部署与调度问题,构建微服务组合部署与调度最优化问题模型。以资源服务中心计算及存储资源利用率、负载均衡率和微服务实际使用率等为优化目标,以服务的完备性、资源与存储资源总量和微服务序列总量... 面向微服务实例在不同资源中心的组合部署与调度问题,构建微服务组合部署与调度最优化问题模型。以资源服务中心计算及存储资源利用率、负载均衡率和微服务实际使用率等为优化目标,以服务的完备性、资源与存储资源总量和微服务序列总量为约束条件,提出基于进化多目标优化算法(NSGA-Ⅲ,MOEA/D)求解方法,寻求微服务序列在不同资源中心的实例组合部署与调度策略。通过真实数据集实验对比,在全部满足用户服务请求的约束下,该策略比传统微服务组合调度策略的计算、存储资源平均空闲率和微服务实际空闲率要分别低13.21%、5.2%和16.67%。 展开更多
关键词 微服务 服务组合优化 基于参考点非支配排序遗传算法 基于分解的多目标进化算法 多目标优化
下载PDF
求解复杂多目标优化问题MOEA/D-GEP算法 被引量:9
17
作者 张冬梅 龚小胜 +1 位作者 戴光明 彭雷 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期33-36,共4页
针对复杂多目标优化问题,提出一种基于演化建模的MOEA/D(基于分解的多目标遗传算法)求解算法(MOEA/D-GEP).该算法利用MOEA/D算法思想分解多目标优化问题,对分解后得到的可行解用基于模拟退火的GEP算法建模,从中选取预测值较好的点进入... 针对复杂多目标优化问题,提出一种基于演化建模的MOEA/D(基于分解的多目标遗传算法)求解算法(MOEA/D-GEP).该算法利用MOEA/D算法思想分解多目标优化问题,对分解后得到的可行解用基于模拟退火的GEP算法建模,从中选取预测值较好的点进入下一次真实适应值的计算.采用国际公认的ZDT,DTLZ等测试函数进行实验验证,并与MOEA/D-EGO演化多目标优化算法进行了比较.实验结果表明:该算法在IGD性能指标上有较好的表现,说明将演化建模技术引入MOEA/D算法提高了种群个体分布模型的精度,降低了求解复杂多目标优化问题的计算成本. 展开更多
关键词 复杂多目标优化问题 全局优化算法 基于表达式编程 演化多目标优化 moea/d-GEP
原文传递
基于权重迭代的偏好多目标分解算法解决参考点对算法影响的研究 被引量:9
18
作者 郑金华 喻果 贾月 《电子学报》 EI CAS CSCD 北大核心 2016年第1期67-76,共10页
在传统偏好多目标进化算法中,参考点是表达决策者的偏好信息最常用的方式,但是参考点所处位置信息有时严重影响算法的性能.针对以上问题,本文提出了一种基于权重迭代的偏好多目标分解算法(MOEA/DPRE),主要利用权重迭代方法获取一组均匀... 在传统偏好多目标进化算法中,参考点是表达决策者的偏好信息最常用的方式,但是参考点所处位置信息有时严重影响算法的性能.针对以上问题,本文提出了一种基于权重迭代的偏好多目标分解算法(MOEA/DPRE),主要利用权重迭代方法获取一组均匀的权重向量,并对偏好区域进行映射,使得算法在进化过程中,不用考虑参考点所处位置信息对算法性能的影响,另外提出了一种稳定可控的偏好区域模型,能响应决策者设置任意大小的偏好区域.通过对比实验表明该算法具有较好的收敛性和分布性,同时给出了满足决策者不同要求的算法模型,并且能够很好的解决参考点的位置信息对算法的影响. 展开更多
关键词 多目标分解算法 进化算法 偏好 权重迭代 决策者
下载PDF
一种基于MOEA/D的组合权重方法 被引量:7
19
作者 程建华 董铭涛 赵琳 《控制与决策》 EI CSCD 北大核心 2021年第12期3056-3062,共7页
为了准确地求解组合权重的组合系数,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)思想引入评估领域,提出一种基于MOEA/D的组合权重方法.通常,利用加权和法将组合权重模型转化为... 为了准确地求解组合权重的组合系数,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)思想引入评估领域,提出一种基于MOEA/D的组合权重方法.通常,利用加权和法将组合权重模型转化为单目标模型时,模型加权系数难以准确确定.对此,引入MOEA/D算法的分解思想,将组合权重模型转化为多个单目标子模型.MOEA/D算法仅适用于无约束优化问题,而较为常用的惩罚函数法难以表达进化初期无可行解的情况,因而提出改进自适应惩罚函数(improved adaptive penalty function,IAPF),将组合权重模型转化为无约束优化模型.应用所提出方法与其他方法进行仿真实验,实验结果表明,所提出算法具有有效性. 展开更多
关键词 组合权重 多目标优化 约束 moea/d 自适应惩罚函数
原文传递
旋翼翼型高维多目标气动优化设计 被引量:4
20
作者 宋超 周铸 +1 位作者 李伟斌 罗骁 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第1期95-105,共11页
先进旋翼翼型设计是典型的多设计点、多目标优化问题,常规优化方法已无法满足翼型高维多目标优化设计的要求。基于分解的多目标优化算法(MOEA/D),建立了考虑高低速升阻特性、力矩特性、阻力发散特性等的旋翼翼型高维多目标优化设计方法... 先进旋翼翼型设计是典型的多设计点、多目标优化问题,常规优化方法已无法满足翼型高维多目标优化设计的要求。基于分解的多目标优化算法(MOEA/D),建立了考虑高低速升阻特性、力矩特性、阻力发散特性等的旋翼翼型高维多目标优化设计方法,并采用高精度kriging模型以提高优化设计效率。针对旋翼内段、中段翼型进行了5个设计目标的全局优化设计,采用自组织图映射(SOM)方法对最优Pareto解集进行了聚类分析。典型翼型CFD结果分析表明,中段翼型低速力矩系数幅值减小约50.7%,高速最大升力系数提高约6.5%,最大升阻比提高约7.7%,同时阻力发散特性得到改善,内段翼型同样取得了良好的多目标优化效果。研究表明,MOEA/D算法对高维多目标气动优化设计问题具有很好的适应性,能有效提升旋翼高低速气动性能设计的能力。 展开更多
关键词 旋翼翼型 高维多目标 气动优化 基于分解的多目标优化算法(moea/d) 自组织图映射(SOM)
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部