期刊文献+
共找到409篇文章
< 1 2 21 >
每页显示 20 50 100
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:10
1
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 Particle swarm optimization Genetic algorithm Random inertia weight multi-objective reservoir operation Reservoir group Panjiakou Reservoir
下载PDF
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
2
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation Dynamics Model Competitive multi-objective Particle swarm optimization algorithm (CMOPSO) multi-objective optimization
下载PDF
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
3
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(PSO) algorithm chemical process
下载PDF
Design Optimization of Permanent Magnet Eddy Current Coupler Based on an Intelligence Algorithm
4
作者 Dazhi Wang Pengyi Pan Bowen Niu 《Computers, Materials & Continua》 SCIE EI 2023年第11期1535-1555,共21页
The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to ... The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to the load and generates heat and losses,reducing its energy transfer efficiency.This issue has become an obstacle for PMEC to develop toward a higher power.This paper aims to improve the overall performance of PMEC through multi-objective optimization methods.Firstly,a PMEC modeling method based on the Levenberg-Marquardt back propagation(LMBP)neural network is proposed,aiming at the characteristics of the complex input-output relationship and the strong nonlinearity of PMEC.Then,a novel competition mechanism-based multi-objective particle swarm optimization algorithm(NCMOPSO)is proposed to find the optimal structural parameters of PMEC.Chaotic search and mutation strategies are used to improve the original algorithm,which improves the shortcomings of multi-objective particle swarm optimization(MOPSO),which is too fast to converge into a global optimum,and balances the convergence and diversity of the algorithm.In order to verify the superiority and applicability of the proposed algorithm,it is compared with several popular multi-objective optimization algorithms.Applying them to the optimization model of PMEC,the results show that the proposed algorithm has better comprehensive performance.Finally,a finite element simulation model is established using the optimal structural parameters obtained by the proposed algorithm to verify the optimization results.Compared with the prototype,the optimized PMEC has reduced eddy current losses by 1.7812 kW,increased output torque by 658.5 N·m,and decreased costs by 13%,improving energy transfer efficiency. 展开更多
关键词 Competition mechanism Levenberg-Marquardt back propagation neural network multi-objective particle swarm optimization algorithm permanent magnet eddy current coupler
下载PDF
Interactive Multi-objective Optimization Design for the Pylon Structure of an Airplane 被引量:4
5
作者 An Weigang Li Weiji 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第6期524-528,共5页
The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will ... The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will be unacceptable in engineering practice due to the large amount of evaluation needed for the algorithm. So, a new interactive optimization algorithm-interactive multi-objective particle swarm optimization (IMOPSO) is presented. IMOPSO is efficient, simple and operable. The decision-maker can expediently determine the accurate preference in IMOPSO. IMOPSO is used to perform the pylon structure optimization design of an airplane, and a satisfactory design is achieved after only 12 generations of IMOPSO evolutions. Compared with original design, the maximum displacement of the satisfactory design is reduced, and the mass of the satisfactory design is decreased for 22%. 展开更多
关键词 pylon structure multi-objective optimization algorithm interactive algorithm multi-objective particle swarm optimization neural network
下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
6
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
7
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 Particle swarm algorithm CHAOTIC SEQUENCES SELF-ADAPTIVE STRATEGY multi-objective optimization
下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
8
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 Improved Particle swarm optimization algorithm Double POPULATIONS multi-objective Adaptive Strategy CHAOTIC SEQUENCE
下载PDF
Unmanned wave glider heading model identification and control by artificial fish swarm algorithm 被引量:2
9
作者 WANG Lei-feng LIAO Yu-lei +2 位作者 LI Ye ZHANG Wei-xin PAN Kai-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2131-2142,共12页
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th... We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified. 展开更多
关键词 unmanned wave glider artificial fish swarm algorithm heading model parameters identification control parameters optimization
下载PDF
Milling Parameters Optimization of Al-Li Alloy Thin-Wall Workpieces Using Response Surface Methodology and Particle Swarm Optimization 被引量:2
10
作者 Haitao Yue Chenguang Guo +2 位作者 Qiang Li Lijuan Zhao Guangbo Hao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期937-952,共16页
To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based... To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based on Response Surface Methodology was carried out.The single factor and interaction of milling parameters on surface roughness and specific cutting energy were analyzed,and the multi-objective optimization model was constructed.The Multiobjective Particle Swarm Optimization algorithm introducing the Chaos Local Search algorithm and the adaptive inertial weight was applied to determine the optimal combination of milling parameters.It was observed that surface roughness was mainly influenced by feed per tooth,and specific cutting energy was negatively correlated with feed per tooth,radial cutting depth and axial cutting depth,while cutting speed has a non-significant influence on specific cutting energy.The optimal combination of milling parameters with different priorities was obtained.The experimental results showed that the maximum relative error of measured and predicted values was 8.05%,and the model had high reliability,which ensured the low surface roughness and cutting energy consumption.It was of great guiding significance for the success of Al-Li alloy thin-wall milling with a high precision and energy efficiency. 展开更多
关键词 Al-Li alloy thin-wall workpieces response surface methodology surface roughness specific cutting energy multi-objective particle swarm optimization algorithm
下载PDF
An Optimization Capacity Design Method of Wind/Photovoltaic/Hydrogen Storage Power System Based on PSO-NSGA-II
11
作者 Lei Xing Yakui Liu 《Energy Engineering》 EI 2023年第4期1023-1043,共21页
The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,th... The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters.To solve the above problem,the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms.Firstly,an integrated energy system consisting of the photovoltaic,wind turbine,electrolysis cell,hydrogen storage tank,and energy storage is established.Meanwhile,the minimum economic cost,the maximum wind and PV power consumption rate,and the minimum load shortage rate are considered to be the objective functions.Then,a hybrid method combined the particle swarm combined with non-dominated sorting genetic algorithms-II is proposed to solve the optimal allocation problem.According to the optimal result,the economic cost is 6.3 million RMB,and the load shortage rate is 9.83%.Finally,four comparative experiments are conducted to verify the superiority-seeking ability of the proposed method.The comparative results indicate that the proposed method possesses a strongermerit-seeking ability,resulting in a solution satisfaction rate of 87.37%,which is higher than that of the unimproved non-dominated sorting genetic algorithms-II. 展开更多
关键词 multi-objective optimization wind/photovoltaic/hydrogen power system particle swarm algorithm non-dominated sorting genetic algorithms-II
下载PDF
Performance Evaluation and Comparison of Multi - Objective Optimization Algorithms for the Analytical Design of Switched Reluctance Machines
12
作者 Shen Zhang Sufei Li +1 位作者 Ronald G.Harley Thomas G.Habetler 《CES Transactions on Electrical Machines and Systems》 2017年第1期58-65,共8页
This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of... This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of electric machine design problems are discussed,followed by benchmark studies comparing generic algorithms(GA),differential evolution(DE)algorithms and particle swarm optimizations(PSO)on a 6/4 switched reluctance machine design with seven independent variables and a strong nonlinear multi-objective Pareto front.To better quantify the quality of the Pareto fronts,five primary quality indicators are employed to serve as the algorithm testing metrics.The results show that the three algorithms have similar performances when the optimization employs only a small number of candidate designs or ultimately,a significant amount of candidate designs.However,DE tends to perform better in terms of convergence speed and the quality of Pareto front when a relatively modest amount of candidates are considered. 展开更多
关键词 Design methodology differential evolution(DE) generic algorithm(GA) multi-objective optimization algorithms particle swarm optimization(PSO) switched reluctance machines
下载PDF
Stroke optimization of a novel multi-station rotary polishing robot based on workspace analysis 被引量:1
13
作者 李东京 Wei Wang +2 位作者 Wang Qilong Hao Daxian Jin Hui 《High Technology Letters》 EI CAS 2018年第3期313-321,共9页
In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is simi... In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is similar to dual-arm robot. Forward and inverse kinematic analysis is carried out by robot modeling. In order to make this robot structure more compact,first of all,X,Y and Z three moving degrees of freedom( DOF) limit stroke polishing need is calculated by using an artificial fish swarm algorithm,which analyzes dexterous workspace of this robot. Then,on the basis of the above analysis,the three DOF stroke is optimized. Simulation and polishing experimental results verify that this polishing robot with optimized stroke parameters can meet the polishing needs of faucets and other bathroom pieces. 展开更多
关键词 multi-station rotary table polishing robot dexterous workspace analysis stroke optimization dual-arm robot artificial fish swarm algorithm (AFSA)
下载PDF
考虑系统稳定边界的同步调相机励磁与升压变参数联合优化 被引量:1
14
作者 潘学萍 许一 +3 位作者 赵天骐 王宣元 谢欢 郭金鹏 《电力系统保护与控制》 EI CSCD 北大核心 2024年第8期45-54,共10页
现有提升调相机动态无功特性的参数优化方法侧重于电磁参数的优化,这给生产企业带来较高的工艺要求和较大的成本压力。针对该问题提出考虑系统稳定约束的调相机励磁系统及升压变参数联合优化方法,分析其对电磁参数优化的可替代性。首先... 现有提升调相机动态无功特性的参数优化方法侧重于电磁参数的优化,这给生产企业带来较高的工艺要求和较大的成本压力。针对该问题提出考虑系统稳定约束的调相机励磁系统及升压变参数联合优化方法,分析其对电磁参数优化的可替代性。首先,推导了基于Park模型下调相机的无功频域特性,与6阶实用模型下的无功频域特性对比,基于调相机的Park模型可提升调相机动态无功特性的分析精度。然后,提出根据调相机并网系统的稳定边界确定参数的优化区间,采用频域灵敏度方法确定重点参数,并基于人工鱼群算法进行参数优化。最后,通过仿真结果表明,励磁系统与升压变参数的联合优化,可获得与仅优化电磁参数时相近的调相机动态无功性能,验证了电磁参数优化的可替代性,从而降低调相机的制造成本,扩大同步调相机的应用场合和范围。 展开更多
关键词 分布式调相机 动态无功特性 参数优化 无功电流增益 人工鱼群算法
下载PDF
基于PSO与AFSA的GNSS整周模糊度种群融合优化算法
15
作者 郭迎庆 詹洋 +3 位作者 张琰 王译那 徐赵东 李今保 《工程科学学报》 EI CSCD 北大核心 2024年第12期2246-2256,共11页
载波相位测量是实现全球导航卫星系统(Global navigation satellite system, GNSS)快速高精度定位的重要途径,而准确解算整周模糊度是其中的关键步骤之一.粒子群算法(Particle swarm optimization, PSO)收敛速度快但易陷入局部最优,人... 载波相位测量是实现全球导航卫星系统(Global navigation satellite system, GNSS)快速高精度定位的重要途径,而准确解算整周模糊度是其中的关键步骤之一.粒子群算法(Particle swarm optimization, PSO)收敛速度快但易陷入局部最优,人工鱼群算法(Artificial fish swarm algorithm, AFSA)全局优化性能好但收敛速度慢,因此融合两种算法的优点,提出一种GNSS整周模糊度种群融合优化算法(PSOAF).首先,通过载波相位双差方程求解整周模糊度的浮点解和对应的协方差矩阵.然后,采用反整数Cholesky算法对模糊度浮点解作降相关处理.其次,针对整数最小二乘估计的不足通过优化适应度函数来提高算法的收敛性和搜索性能.最后,通过PSOAF算法对整周模糊度进行解算.通过经典算例和试验研究表明:PSOAF算法可以更快地收敛于最优解,搜索效率也更为出色,解算的基线精度可以控制在10 mm以内,在短基线的实际情况下具有较高的应用价值. 展开更多
关键词 全球导航卫星系统(GNSS) 整周模糊度 粒子群算法 人工鱼群算法 融合算法
下载PDF
基于人工鱼群-遗传算法的多品种小批量零件数控加工工艺优化研究
16
作者 张天瑞 乔文澍 《制造技术与机床》 北大核心 2024年第5期152-159,共8页
基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗... 基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗糙度模型,对各工序能耗模型及整体粗糙度进行归一化处理,形成整体能耗模型;其次,以能耗及粗糙度为目标函数,建立AFSA-GA算法,通过对各工序能耗求解得出最适当的机床功率及其所对应的能耗和表面粗糙度;最后,针对所获得的最优功率,进行优化结果的验证,为五轴机床的实际加工提供解决方案。 展开更多
关键词 加工工艺优化 多品种小批量 零件加工 人工鱼群-遗传算法
下载PDF
Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms 被引量:6
17
作者 JoséD. MARTíNEZ-MORALES Elvia R. PALACIOS-HERNáNDEZ Gerardo A. VELáZQUEZ-CARRILLO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期657-670,共14页
In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (S... In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively. 展开更多
关键词 Engine calibration multi-objective optimization Neural networks Multiple objective particle swarm optimization(MOPSO) Nondominated sorting genetic algorithm II (NSGA-II)
原文传递
超网络体系作战下的打击目标优选模型 被引量:2
18
作者 高泽伦 郑少秋 +1 位作者 梁汝鹏 黄炎焱 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期182-189,共8页
针对当前进行海上作战体系目标优选分析与决策时对打击代价考虑不足的问题,提出综合考虑目标节点重要度和打击费效度的网络节点分析模型。利用超网络构建海上作战体系网络模型,通过度和介数等指标评估网络中节点的重要度;利用打击费效... 针对当前进行海上作战体系目标优选分析与决策时对打击代价考虑不足的问题,提出综合考虑目标节点重要度和打击费效度的网络节点分析模型。利用超网络构建海上作战体系网络模型,通过度和介数等指标评估网络中节点的重要度;利用打击费效比为指标评估网络中节点的打击代价,进而将目标分析与选择问题转化为多目标优化问题,建立寻优模型,并通过人工鱼群算法进行寻优求解。最后对模型进行案例仿真应用,通过专家Delphi法评估检验,结果表明所建立的模型方法可行,对水面舰队体系的目标分析与选择具有借鉴作用。 展开更多
关键词 目标选择 超网络 打击代价 人工鱼群算法 多目标优化
下载PDF
最佳节点找寻下传感节点优化部署覆盖仿真
19
作者 江锐 张薇 《计算机仿真》 2024年第6期512-515,535,共5页
在传感节点部署过程中,节点的密度影响节点覆盖,密度过低会导致覆盖不足,无法捕捉到关键信息;密度过高则会浪费资源和增加成本。因此,提出最佳节点找寻下传感节点部署覆盖优化方法。建立传感节点概率感知衰减模型,获取传感网络中传感节... 在传感节点部署过程中,节点的密度影响节点覆盖,密度过低会导致覆盖不足,无法捕捉到关键信息;密度过高则会浪费资源和增加成本。因此,提出最佳节点找寻下传感节点部署覆盖优化方法。建立传感节点概率感知衰减模型,获取传感网络中传感节点的应用环境。通过全局传感网络冗余节点休眠算法,对冗余节点执行休眠操作,以此减少网络能耗;计算传感网络覆盖率,并将传感网络最大覆盖率和最小传感节点利用率作为传感节点部署覆盖优化目标函数;引入鱼群算法和粒子群算法求解,同步对最佳传感节点位置迭代寻优,以此实现最佳节点找寻下传感节点部署覆盖优化。实验结果表明,所提方法的网络覆盖率高,能够有效降低节点能耗,且运行时间短,增强了网络寿命。 展开更多
关键词 传感节点部署 冗余节点 鱼群算法 粒子群算法 覆盖优化
下载PDF
基于鸟群人工鱼群算法的区块链移动边缘计算卸载模型
20
作者 孔小爽 袁健 《电子科技》 2024年第8期26-33,共8页
计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mobile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于... 计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mobile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于委托信誉证明(Delegated Proof of Reputation,DPoR)共识机制增强系统的安全性。文中提出一种基于鸟群人工鱼群算法(Bird Swarm-Artificial Fish Swarm Algorithm,BS-AFSA)的区块链移动边缘计算卸载模型,将任务卸载问题转化为优化目标函数来降低计算开销。采用改进鸟群人工鱼群算法来优化任务时延和能量消耗,对算法中的行为参数进行针对性构造,并改进拥挤度因子来提高后期迭代中寻优的局部搜索精度。仿真结果表明,与其他基准算法相比,文中所提算法减少了陷入局部最优的可能性,并降低了联合卸载方案的系统总开销。 展开更多
关键词 区块链 移动边缘计算 计算卸载 共识机制 鸟群算法 人工鱼群算法 任务时延能耗 优化问题
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部