The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed a...Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.展开更多
Flexible transfer line(FTL)is now widely used in ma ny manufacturing domains to realize efficiently,high quantity and economic prod uction.These manufacturing domains include automobile,tractor,internal-combu stion en...Flexible transfer line(FTL)is now widely used in ma ny manufacturing domains to realize efficiently,high quantity and economic prod uction.These manufacturing domains include automobile,tractor,internal-combu stion engine,and so on.In today’s competitive business environment,it is vit ally important for machine tool manufacturers to design flexible transfer line m ore effectively and efficiently according to a wider variety of customer demand s.This paper proposes an approach to a bidding-based flexible transfer line sc hematic design system.By analyzing manual FTL design process,the architecture o f flexible transfer line schematic design system(FTLSDS)is established.The syst em consists:of four processes:part feature modeling,process planning,FTL fac i lity layout and FTL evaluation. For FTL schematic design.a five-level proces s planning strategy named hierarchical process planning method is proposed.This method includes selection of manufacturing feature machining operation;part se t-up planning,feature sequencing,operation sequencing and process plan genera ting.The major decision relies on setup planning.According to the proceeding o f the hierarchical process planning,the structure of reasoning is proposed base d on blackboard.Under this paradigm,a cooperative effort between a hybrid coll ection of knowledge sources is possible.Total reasoning task can be divided int o some subtasks,and recursive-reasoning system is formed.It is convenient for process planning with step-by-step solution.Meanwhile,the blackboard is use d as the global data exchange area during all reasoning process.By using modula r technology,special purpose machine tools can be designed more efficiently and rapidly.The framework of machine modular design system to support machine requ irement design for FTL is established.By synthesizing the FTL evaluation criter ia.five evaluation criteria of flexible transfer 1ine schematic design are take n into account.An exampie is supplied to demonstrate and verify the validity an d feasibility of flexible transfer line schematic design approach.展开更多
In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide...In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide. This paper proposes a general working pattern for a GEO optical satellite, as well as a target observation mission planning model. After analyzing the requirements of users and satellite control agencies, two objectives are simultaneously considered: maximization of total profit and minimization of satellite attitude maneuver angle. An NSGA-II based multi-objective optimization algorithm is proposed, which contains some heuristic principles in the initialization phase and mutation operator, and is embedded with a traveling salesman problem (TSP) optimization. The validity and performance of the proposed method are verified by extensive numerical simulations that include several types of point target distributions.展开更多
The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is propo...The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is proposed in this paper.Several types of relationships to be coordinated and complemented are analyzed and formulated using quantitative indices.According to the graph theory,the HVDC partition is transformed into a graph-cut problem and solved via the spectral clustering algorithm.Finally,the proposed method is validated for a practical multi-HVDC grid,confirming its feasibility and effectiveness.展开更多
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob...Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.展开更多
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl...Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods.展开更多
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro...In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.展开更多
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki...Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.展开更多
With diversified requirements and varying manufacturing environments, the optimal production planning for a steel mill becomes more flexible and complicated. The flexibility provides operators with auxiliary requireme...With diversified requirements and varying manufacturing environments, the optimal production planning for a steel mill becomes more flexible and complicated. The flexibility provides operators with auxiliary requirements through an implementable integrated production planning. In this paper, a mixed-integer nonlinear programming(MINLP) model is proposed for the optimal planning that incorporates various manufacturing constraints and flexibility in a steel plate mill. Furthermore, two solution strategies are developed to overcome the weakness in solving the MINLP problem directly. The first one is to transform the original MINLP formulation to an approximate mixed integer linear programming using a classic linearization method. The second one is to decompose the original model using a branch-and-bound based iterative method. Computational experiments on various instances are presented in terms of the effectiveness and applicability. The result shows that the second method performs better in computational efforts and solution accuracy.展开更多
To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planni...To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planning is proposed based on the multi-objective genetic algorithm (MOGA) for multiple objectives traveling salesman problem (MOTSP). Then, the path between two route nodes is generated based on the heuristic path planning method A *. A simplified timeliness function for route nodes is proposed to represent the timeliness of each node. Based on the proposed timeliness function, experiments are conducted using the proposed two-stage planning method. The experimental results show that the proposed MOGA with improved fitness function can perform the searching function well when the timeliness of the searching task needs to be taken into consideration.展开更多
This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to ...This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to maximize the profit, minimize the total cost, and maximize the Overall Service Level (OSL) of the customers. The system consists of three potential suppliers that serve the factory to serve three customers/distributors. The performance of the developed model is illustrated using a verification example. Discussion of the results proved the efficacy of the model. Also, the effect of the deviation percentages on the different objectives is discussed.展开更多
A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the eva...A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.展开更多
This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, ener...This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.展开更多
In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific re...In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific restricted operation zones,that is,forbidden zones(FZs),to avoid the risks associated with hydropower unit vibration.FZs cause limitations in terms of both the hydropower generation and flexible regulation in the hydro-wind-solar power systems.Therefore,it is essential to consider FZs when determining the optimal wind-solar power capacity that can be compensated by the hydropower.This study presents a mathematical model that incorporates the FZ constraints into the CPHPS problem.Firstly,the FZs of the hydropower units are converted into those of the hydropower plants based on set theory.Secondly,a mathematical model was formulated for the CPHPS,which couples the FZ constraints of hydropower plants with other operational constraints(e.g.,power balance constraints,new energy consumption limits,and hydropower generation functions).Thirdly,dynamic programming with successive approximations is employed to solve the proposed model.Lastly,case studies were conducted on the hydro-wind-solar system of the Qingshui River to demonstrate the effectiveness of the proposed model.展开更多
Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for vol...Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for voltage-source-converter-based direct current(VSC-DC),focusing on flexibility and stability enhancement.First,we established the TEP framework of VSC-DC,by introducing the evaluation indices to quantify the power system flexibility and stability.Subsequently,we propose a bi-level VSC-DC TEP model:the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization(IMFO)algorithm,and the lower-level model evaluates the flexibility through time-series production simulation.Finally,we applied the proposedVSC-DC TEPmethod to the modified IEEE-24 and IEEE-39 test systems,and obtained the optimalVSCDC planning schemes.The results verified that the proposed method can achieve excellent RE curtailment with high flexibility and stability.Furthermore,the well-designed IMFO algorithm outperformed the traditional particle swarm optimization(PSO)and moth flame optimization(MFO)algorithms,confirming the effectiveness of the proposed approach.展开更多
Based on the theory of dynamic enterprise model (DEM), this paper focuses on describing the technic realization methods of DEM and its application in flexible enterprise resource plan (ERP) system. The complete an...Based on the theory of dynamic enterprise model (DEM), this paper focuses on describing the technic realization methods of DEM and its application in flexible enterprise resource plan (ERP) system. The complete and systematical description of various business activities in enterprises, quick response to business changes and the demanding adjustments are achieved with the conformation of the dynamic enterprise model platform and the utilization of the dynamic enterprise system model. Mass customization production is truly used in the implementation and development of ERP software.展开更多
Adjusting and optimizing land use structure is one of the essential approaches to solve the conflict between land supply and demand. In this study,an uncertain interval multi-objective linear programming model was est...Adjusting and optimizing land use structure is one of the essential approaches to solve the conflict between land supply and demand. In this study,an uncertain interval multi-objective linear programming model was established and applied to analyzing the suitability of land use structure in Pi County of Sichuan Province. An adjustment scheme for optimizing land use structure was proposed on the basis of development planning drawn up by the local government. The results are summarized as follows: 1) the optimal adjustment scope for cropland area ranges from 27 976.75 ha to 31 029.08 ha,and the current area is less than the lower limit of the scope; 2) the optimal adjustment scope for garden land area ranges from 4 736.49 ha to 12 967.11 ha,and the current area is less than the lower limit; 3) the optimal adjustment scope for construction land ranges from 7 761.95 ha to 10 393.18 ha,and the current area is greater than the upper limit; 4) the optimal adjustment scope for industry and mining land ranges from 557.29 ha to 693.54 ha,and the current area exceeds the upper limit; and 5) the areas of forest land,grassland and other agricultural land are within the optimal adjustment scope. In order to maximize comprehensive benefit with the limited resources and the demand of sustainable development,the areas of cropland and garden land are supposed to be expanded properly,while the construction land should be controlled and reduced gradually,and the forest land and other agricultural land can be maintained at the current level in short period.展开更多
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.
文摘Flexible transfer line(FTL)is now widely used in ma ny manufacturing domains to realize efficiently,high quantity and economic prod uction.These manufacturing domains include automobile,tractor,internal-combu stion engine,and so on.In today’s competitive business environment,it is vit ally important for machine tool manufacturers to design flexible transfer line m ore effectively and efficiently according to a wider variety of customer demand s.This paper proposes an approach to a bidding-based flexible transfer line sc hematic design system.By analyzing manual FTL design process,the architecture o f flexible transfer line schematic design system(FTLSDS)is established.The syst em consists:of four processes:part feature modeling,process planning,FTL fac i lity layout and FTL evaluation. For FTL schematic design.a five-level proces s planning strategy named hierarchical process planning method is proposed.This method includes selection of manufacturing feature machining operation;part se t-up planning,feature sequencing,operation sequencing and process plan genera ting.The major decision relies on setup planning.According to the proceeding o f the hierarchical process planning,the structure of reasoning is proposed base d on blackboard.Under this paradigm,a cooperative effort between a hybrid coll ection of knowledge sources is possible.Total reasoning task can be divided int o some subtasks,and recursive-reasoning system is formed.It is convenient for process planning with step-by-step solution.Meanwhile,the blackboard is use d as the global data exchange area during all reasoning process.By using modula r technology,special purpose machine tools can be designed more efficiently and rapidly.The framework of machine modular design system to support machine requ irement design for FTL is established.By synthesizing the FTL evaluation criter ia.five evaluation criteria of flexible transfer 1ine schematic design are take n into account.An exampie is supplied to demonstrate and verify the validity an d feasibility of flexible transfer line schematic design approach.
基金supported by the National Natural Science Foundation of China(7150118061473301)
文摘In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide. This paper proposes a general working pattern for a GEO optical satellite, as well as a target observation mission planning model. After analyzing the requirements of users and satellite control agencies, two objectives are simultaneously considered: maximization of total profit and minimization of satellite attitude maneuver angle. An NSGA-II based multi-objective optimization algorithm is proposed, which contains some heuristic principles in the initialization phase and mutation operator, and is embedded with a traveling salesman problem (TSP) optimization. The validity and performance of the proposed method are verified by extensive numerical simulations that include several types of point target distributions.
基金supported by the Science and Technology Project of State Grid Corporation of China:“Control Strategy Optimization Technology for Large-Scale Photovoltaic Power Generation on the Sending-end and Receiving-end of DC Power System”(4000-201934198A-0-0-00)
文摘The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is proposed in this paper.Several types of relationships to be coordinated and complemented are analyzed and formulated using quantitative indices.According to the graph theory,the HVDC partition is transformed into a graph-cut problem and solved via the spectral clustering algorithm.Finally,the proposed method is validated for a practical multi-HVDC grid,confirming its feasibility and effectiveness.
基金Supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR18E050003)the National Natural Science Foundation of China(Grant Nos.51975523,51905481)+2 种基金Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and Technology Innovation Plan(Xinmiao Talents Program)(Grant No.2020R403054)the China Postdoctoral Science Foundation(Grant No.2020M671784)。
文摘Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.
基金This research work is the Key R&D Program of Hubei Province under Grant No.2021AAB001National Natural Science Foundation of China under Grant No.U21B2029。
文摘Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods.
基金supported by the National Key R&D Plan(2020YFB1712902)the National Natural Science Foundation of China(52075036).
文摘In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.
基金Supported in part by the National High Technology Research and Development Program of China(2012AA041701)the National Natural Science Foundation of China(61320106009) the 111 Project of China(B07031)
文摘With diversified requirements and varying manufacturing environments, the optimal production planning for a steel mill becomes more flexible and complicated. The flexibility provides operators with auxiliary requirements through an implementable integrated production planning. In this paper, a mixed-integer nonlinear programming(MINLP) model is proposed for the optimal planning that incorporates various manufacturing constraints and flexibility in a steel plate mill. Furthermore, two solution strategies are developed to overcome the weakness in solving the MINLP problem directly. The first one is to transform the original MINLP formulation to an approximate mixed integer linear programming using a classic linearization method. The second one is to decompose the original model using a branch-and-bound based iterative method. Computational experiments on various instances are presented in terms of the effectiveness and applicability. The result shows that the second method performs better in computational efforts and solution accuracy.
基金Supported by the National Natural Science Foundation of China(9112001591120010)
文摘To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planning is proposed based on the multi-objective genetic algorithm (MOGA) for multiple objectives traveling salesman problem (MOTSP). Then, the path between two route nodes is generated based on the heuristic path planning method A *. A simplified timeliness function for route nodes is proposed to represent the timeliness of each node. Based on the proposed timeliness function, experiments are conducted using the proposed two-stage planning method. The experimental results show that the proposed MOGA with improved fitness function can perform the searching function well when the timeliness of the searching task needs to be taken into consideration.
文摘This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to maximize the profit, minimize the total cost, and maximize the Overall Service Level (OSL) of the customers. The system consists of three potential suppliers that serve the factory to serve three customers/distributors. The performance of the developed model is illustrated using a verification example. Discussion of the results proved the efficacy of the model. Also, the effect of the deviation percentages on the different objectives is discussed.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .60 1 340 1 0 )
文摘A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.
基金financial supports and the strategic platform for innovation&research provided by Danish national project iPower.
文摘This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.
文摘In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific restricted operation zones,that is,forbidden zones(FZs),to avoid the risks associated with hydropower unit vibration.FZs cause limitations in terms of both the hydropower generation and flexible regulation in the hydro-wind-solar power systems.Therefore,it is essential to consider FZs when determining the optimal wind-solar power capacity that can be compensated by the hydropower.This study presents a mathematical model that incorporates the FZ constraints into the CPHPS problem.Firstly,the FZs of the hydropower units are converted into those of the hydropower plants based on set theory.Secondly,a mathematical model was formulated for the CPHPS,which couples the FZ constraints of hydropower plants with other operational constraints(e.g.,power balance constraints,new energy consumption limits,and hydropower generation functions).Thirdly,dynamic programming with successive approximations is employed to solve the proposed model.Lastly,case studies were conducted on the hydro-wind-solar system of the Qingshui River to demonstrate the effectiveness of the proposed model.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under Grant 52140023000T.
文摘Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for voltage-source-converter-based direct current(VSC-DC),focusing on flexibility and stability enhancement.First,we established the TEP framework of VSC-DC,by introducing the evaluation indices to quantify the power system flexibility and stability.Subsequently,we propose a bi-level VSC-DC TEP model:the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization(IMFO)algorithm,and the lower-level model evaluates the flexibility through time-series production simulation.Finally,we applied the proposedVSC-DC TEPmethod to the modified IEEE-24 and IEEE-39 test systems,and obtained the optimalVSCDC planning schemes.The results verified that the proposed method can achieve excellent RE curtailment with high flexibility and stability.Furthermore,the well-designed IMFO algorithm outperformed the traditional particle swarm optimization(PSO)and moth flame optimization(MFO)algorithms,confirming the effectiveness of the proposed approach.
文摘Based on the theory of dynamic enterprise model (DEM), this paper focuses on describing the technic realization methods of DEM and its application in flexible enterprise resource plan (ERP) system. The complete and systematical description of various business activities in enterprises, quick response to business changes and the demanding adjustments are achieved with the conformation of the dynamic enterprise model platform and the utilization of the dynamic enterprise system model. Mass customization production is truly used in the implementation and development of ERP software.
基金Under the auspices of National Key Technology R&D Program of China (No. 2006BAB04A08)
文摘Adjusting and optimizing land use structure is one of the essential approaches to solve the conflict between land supply and demand. In this study,an uncertain interval multi-objective linear programming model was established and applied to analyzing the suitability of land use structure in Pi County of Sichuan Province. An adjustment scheme for optimizing land use structure was proposed on the basis of development planning drawn up by the local government. The results are summarized as follows: 1) the optimal adjustment scope for cropland area ranges from 27 976.75 ha to 31 029.08 ha,and the current area is less than the lower limit of the scope; 2) the optimal adjustment scope for garden land area ranges from 4 736.49 ha to 12 967.11 ha,and the current area is less than the lower limit; 3) the optimal adjustment scope for construction land ranges from 7 761.95 ha to 10 393.18 ha,and the current area is greater than the upper limit; 4) the optimal adjustment scope for industry and mining land ranges from 557.29 ha to 693.54 ha,and the current area exceeds the upper limit; and 5) the areas of forest land,grassland and other agricultural land are within the optimal adjustment scope. In order to maximize comprehensive benefit with the limited resources and the demand of sustainable development,the areas of cropland and garden land are supposed to be expanded properly,while the construction land should be controlled and reduced gradually,and the forest land and other agricultural land can be maintained at the current level in short period.