期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Improved Multi-objective Ant Colony Optimization Algorithm and Its Application in Complex Reasoning 被引量:3
1
作者 WANG Xinqing ZHAO Yang +2 位作者 WANG Dong ZHU Huijie ZHANG Qing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1031-1040,共10页
The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become... The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints.So far,little research has been carried out in this field.This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes.Three optimization objectives are considered simultaneously: maximum probability of average fault,maximum average importance,and minimum average complexity of test.Under the constraints of both known symptoms and the causal relationship among different components,a multi-objective optimization mathematical model is set up,taking minimizing cost of fault reasoning as the target function.Since the problem is non-deterministic polynomial-hard(NP-hard),a modified multi-objective ant colony algorithm is proposed,in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives.At last,a Pareto optimal set is acquired.Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set,through which the final fault causes can be identified according to decision-making demands,thus realize fault reasoning of the multi-constraint and multi-objective complex system.Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model,which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system. 展开更多
关键词 fault reasoning ant colony algorithm Pareto set multi-objective optimization complex system
下载PDF
Multi-Objective Optimization of External Louvers in Buildings
2
作者 Tzu-Chia Chen Ngakan Ketut Acwin Dwijendra +2 位作者 I.Wayan Parwata Agata Iwan Candra Elsayed M.Tag El Din 《Computers, Materials & Continua》 SCIE EI 2023年第4期1305-1316,共12页
Because solar energy is among the renewable energies,it has traditionally been used to provide lighting in buildings.When solar energy is effectively utilized during the day,the environment is not only more comfortabl... Because solar energy is among the renewable energies,it has traditionally been used to provide lighting in buildings.When solar energy is effectively utilized during the day,the environment is not only more comfortable for users,but it also utilizes energy more efficiently for both heating and cooling purposes.Because of this,increasing the building’s energy efficiency requires first controlling the amount of light that enters the space.Considering that the only parts of the building that come into direct contact with the sun are the windows,it is essential to make use of louvers in order to regulate the amount of sunlight that enters the building.Through the use of Ant Colony Optimization(ACO),the purpose of this study is to estimate the proportions and technical specifications of external louvers,as well as to propose a model for designing the southern openings of educational space in order to maximize energy efficiency and intelligent consumption,as well as to ensure that the appropriate amount of light is provided.According to the findings of this research,the design of external louvers is heavily influenced by a total of five distinct aspects:the number of louvers,the depth of the louvers,the angle of rotation of the louvers,the distance between the louvers and the window,and the reflection coefficient of the louvers.The results of the 2067 simulated case study show that the best reflection rates of the louvers are between 0 and 15 percent,and the most optimal distance between the louvers and the window is in the range of 0 to 18 centimeters.Additionally,the results show that the best distance between the louvers and the window is in the range of 0 to 18 centimeters. 展开更多
关键词 ant colony optimization energy consumption multi-objective optimization louvre
下载PDF
On the Development of a Hybridized Ant Colony Optimization (HACO) Algorithm 被引量:1
3
作者 Kayode J. Adebayo Felix M. Aderibigbe Adejoke O. Dele-Rotimi 《American Journal of Computational Mathematics》 2019年第4期358-372,共15页
This paper proposes a Hybridized Ant Colony Optimization (HACO) algorithm. It integrates the advantages of Ant System (AS) and Ant Colony System (ACS) of solving optimization problems. The main focus and core of the H... This paper proposes a Hybridized Ant Colony Optimization (HACO) algorithm. It integrates the advantages of Ant System (AS) and Ant Colony System (ACS) of solving optimization problems. The main focus and core of the HACO algorithm are based on annexing the strengths of the AS, ACO and the Max-Min Ant System (MMAS) previously proposed by various researchers at one time or the order. In this paper, the HACO algorithm for solving optimization problems employs new Transition Probability relations with a Jump transition probability relation which indicates the point or path at which the desired optimum value has been met. Also, it brings to play a new pheromone updating rule and introduces the pheromone evaporation residue that calculates the amount of pheromone left after updating which serves as a guide to the successive ant traversing the path and diverse local search approaches. Regarding the computational efficiency of the HACO algorithm, we observe that the HACO algorithm can find very good solutions in a short time, as the algorithm has been tested on a number of combinatorial optimization problems and results shown to compare favourably with analytical results. This strength can be combined with other metaheuristic approaches in the future work to solve complex combinatorial optimization problems. 展开更多
关键词 ant colony System Metaheuristics PHEROMONE JUMP Transition Probability PHEROMONE EVAPORATION RESIDUE hybridized ant colony optimization
下载PDF
Ant colony optimization for bearings-only maneuvering target tracking in sensors network
4
作者 Benlian XU Zhiquan WANG Zhengyi WU 《控制理论与应用(英文版)》 EI 2007年第3期301-306,共6页
In this paper, the problem of bearings-only maneuvering target tracking in sensors network is investigated. Two objectives are proposed and optimized by the ant colony optimization (ACO), then two kinds of node sear... In this paper, the problem of bearings-only maneuvering target tracking in sensors network is investigated. Two objectives are proposed and optimized by the ant colony optimization (ACO), then two kinds of node searching strategies of the ACO algorithm are presented. On the basis of the nodes determined by the ACO algorithm, the interacting multiple models extended Kalman filter (IMMEKF) for the multi-sensor bearings-only maneuvering target tracking is introduced. Simulation results indicate that the proposed ACO algorithm performs better than the Closest Nodes method. Furthermore, the Strategy 2 of the two given strategies is preferred in terms of the requirement of real time. 展开更多
关键词 ant colony algorithm multi-objective optimization Maneuvering target tracking BEARINGS-ONLY
下载PDF
Traveling Salesman Problem Using an Enhanced Hybrid Swarm Optimization Algorithm 被引量:2
5
作者 郑建国 伍大清 周亮 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期362-367,共6页
The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was ... The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms. 展开更多
关键词 particle SWARM optimization(PSO) ant colony optimization(ACO) SWARM intelligence TRAVELING SALESMAN problem(TSP) hybrid algorithm
下载PDF
Efficient Approach for Resource Allocation in WPCN Using Hybrid Optimization
6
作者 Richu Mary Thomas Malarvizhi Subramani 《Computers, Materials & Continua》 SCIE EI 2022年第7期1275-1291,共17页
The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blo... The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blooming RF technology provides energy renewal of wireless devices with the quality of service(QoS).In addition,it does not require any unnecessary alterations on the transmission hardware side.A hybridized global optimization technique uniting Global best and Local best(GL)based particle swarm optimization(PSO)and ant colony optimization(ACO)is proposed in this paper to optimally allocate resources in wireless powered communication networks(WPCN)through coordinated operation of communication groups,in which the wireless energy transfer and information sharing take place concomitantly by the aid of a cooperative relay positioned in between the communicating groups.The designed algorithm assists in minimizing power consumption and maximizes the weighted sum rate at the end-user side.Thus the principal target of the system is coordinated optimization of energy beamforming along with time and energy allocation to reduce the total energy consumed combined with assured information rates of the communication groups.Numerical outputs are presented to manifest the proposed system’s performance to verify the analytical results via simulations. 展开更多
关键词 Wireless powered communication networks cooperative communication RELAY hybrid optimization technique ant colony optimization particle swarm optimization
下载PDF
Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization 被引量:2
7
作者 Mehdi BABAEI Ebrahim SANAEI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第4期472-480,共9页
In this article, multi-objective optimization of braced frames is investigated using a novel hybrid algorithm. Initially, the applied evolutionary algorithms, ant colony optimization (ACO) and genetic algorithm (GA... In this article, multi-objective optimization of braced frames is investigated using a novel hybrid algorithm. Initially, the applied evolutionary algorithms, ant colony optimization (ACO) and genetic algorithm (GA) are reviewed, followed by developing the hybrid method. A dynamic hybridization of GA and ACO is proposed as a novel hybrid method which does not appear in the literature for optimal design of steel braced frames. Not only the cross section of the beams, columns and braces are considered to be the design variables, but also the topologies of the braces are taken into account as additional design variables. The hybrid algorithm explores the whole design space for optimum solutions. Weight and maximum displacement of the structure are employed as the objective functions for multi-objective optimal design. Subsequently, using the weighted sum method (WSM), the two objective problem are converted to a single objective optimization problem and the proposed hybrid genetic ant colony algorithm (HGAC) is developed for optimal design. Assuming different combination for weight coefficients, a trade-offbetween the two objectives are obtained in the numerical example section. To make the final decision easier for designers, related constraint is applied to obtain practical topologies. The achieved results show the capability of HGAC to find optimal topologies and sections for the elements. 展开更多
关键词 multi-objective hybrid algorithm ant colony genetic algorithm DISPLACEMENT weighted sum method steelbraced frames
原文传递
Solving algorithm for TA optimization model based on ACO-SA 被引量:4
8
作者 Jun Wang Xiaoguang Gao Yongwen Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期628-639,共12页
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi... An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat. 展开更多
关键词 target assignment (TA) optimization ant colony optimization (ACO) algorithm simulated annealing (SA) algorithm hybrid optimization strategy.
下载PDF
Departure Trajectory Design Based on Pareto Ant Colony Algorithm
9
作者 Sun Fanrong Han Songchen Qian Ge 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第4期451-460,共10页
Due to the ever-increasing air traffic flow,the influence of aircraft noise around the airport has become significant.As most airlines are trying to decrease operation cost,stringent requirements for more simple and e... Due to the ever-increasing air traffic flow,the influence of aircraft noise around the airport has become significant.As most airlines are trying to decrease operation cost,stringent requirements for more simple and efficient departure trajectory are on a rise.Therefore,a departure trajectory design was established for performancebased navigation technology,and a multi-objective optimization model was developed,with constraints of safety and noise influence,as well as optimization targets of efficiency and simplicity.An improved ant colony algorithm was then proposed to solve the optimization problem.Finally,an experiment was conducted using the Lanzhou terminal airspace operation data,and the results showed that the designed departure trajectory was feasible and efficient in decreasing the aircraft noise influence. 展开更多
关键词 aircraft noise departure trajectory design multi-objective optimization Pareto ant colony algorithm
下载PDF
基于MTSP问题的公共图书馆智慧配送服务
10
作者 江新姿 安晓丽 高尚 《计算机与现代化》 2024年第9期52-55,60,共5页
随着“互联网+”思维和图书馆服务模式与水平的发展,纸质资源的物流配送成为图书馆借阅平台的最后环节。如何在智慧图书馆智能服务平台中降低图书馆的配送成本、均衡配送员的工作量、提升配送效率是智慧服务的研究方向。在智能计算研究... 随着“互联网+”思维和图书馆服务模式与水平的发展,纸质资源的物流配送成为图书馆借阅平台的最后环节。如何在智慧图书馆智能服务平台中降低图书馆的配送成本、均衡配送员的工作量、提升配送效率是智慧服务的研究方向。在智能计算研究中,解决TSP旅行商问题常采用蚁群算法,因为蚁群算法能利用信息正反馈和启发式信息诱导,从而找出多目标遍历的最优解。针对图书馆馆际与社区物流配送的多旅行商MTSP问题,使用混合蚁群优化算法来实现图书纸质资源最后配送路径最优化处理,可以更好地实现配送效率的综合提升。图书馆高效率优质服务可以更好地提升阅读质量。 展开更多
关键词 智慧配送 多旅行商问题 混合蚁群优化算法
下载PDF
A Multi-Objective Optimization Method of Initial Virtual Machine Fault-Tolerant Placement for Star Topological Data Centers of Cloud Systems 被引量:6
11
作者 Wei Zhang Xiao Chen Jianhui Jiang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第1期95-111,共17页
Virtualization is the most important technology in the unified resource layer of cloud computing systems.Static placement and dynamic management are two types of Virtual Machine(VM)management methods.VM dynamic manage... Virtualization is the most important technology in the unified resource layer of cloud computing systems.Static placement and dynamic management are two types of Virtual Machine(VM)management methods.VM dynamic management is based on the structure of the initial VM placement,and this initial structure will affect the efficiency of VM dynamic management.When a VM fails,cloud applications deployed on the faulty VM will crash if fault tolerance is not considered.In this study,a model of initial VM fault-tolerant placement for star topological data centers of cloud systems is built on the basis of multiple factors,including the service-level agreement violation rate,resource remaining rate,power consumption rate,failure rate,and fault tolerance cost.Then,a heuristic ant colony algorithm is proposed to solve the model.The service-providing VMs are placed by the ant colony algorithms,and the redundant VMs are placed by the conventional heuristic algorithms.The experimental results obtained from the simulation,real cluster,and fault injection experiments show that the proposed method can achieve better VM fault-tolerant placement solution than that of the traditional first fit or best fit descending method. 展开更多
关键词 cloud computing virtual machine placement fault tolerance multi-objective optimization heuristic ant colony algorithm
原文传递
基于混合蚁群算法的无人化农机路径寻优研究
12
作者 杨会甲 张亚军 +2 位作者 王鹏杰 王东 王亚平 《湖北农业科学》 2024年第8期247-251,共5页
针对智慧农业中复杂环境下无人化农机路径规划寻优过程中存在的迭代速度慢、路径安全性较低等问题,融合人工势场、量子行为以及基于B样条的平滑策略提出了混合蚁群算法。该方法在迭代初期引入人工势场法,以解决迭代速度慢问题以及实现... 针对智慧农业中复杂环境下无人化农机路径规划寻优过程中存在的迭代速度慢、路径安全性较低等问题,融合人工势场、量子行为以及基于B样条的平滑策略提出了混合蚁群算法。该方法在迭代初期引入人工势场法,以解决迭代速度慢问题以及实现全局最优平衡;在路径寻优的中期加入量子行为优化信息密度阈值,改进算法状态选择概率,避免算法陷入局部最优,以提高获取优质解的能力;在迭代后期融合基于B样条的平滑策略,优化最优路径,提高无人化农机避障能力。仿真试验结果表明,基于混合蚁群算法的无人化农机在复杂环境作业时,路径寻优能力得到有效提升,路径优化响应速度提升了73倍,路径优化后距离缩短超过11.8%。 展开更多
关键词 智慧农业 无人化农机 路径寻优 混合蚁群算法 避障 人工势场
下载PDF
基于混合遗传算法的堆垛机路径优化研究
13
作者 蒋小燕 周先烨 《物流科技》 2024年第5期24-27,共4页
针对自动化立体仓库中堆垛机运行路径杂乱的问题,研究了一种基于遗传算法和蚁群算法相结合的混合遗传算法。设计和构建了立体仓库的整体运行模型,并对仓库中的运行区域进行了划分,实现了区域的合理分配。通过新的混合遗传算法,实现了对... 针对自动化立体仓库中堆垛机运行路径杂乱的问题,研究了一种基于遗传算法和蚁群算法相结合的混合遗传算法。设计和构建了立体仓库的整体运行模型,并对仓库中的运行区域进行了划分,实现了区域的合理分配。通过新的混合遗传算法,实现了对堆垛机控制算法的优化。通过实验计算,证明了在利用混合遗传算法控制堆垛机存取货物时,堆垛机行走的路程要比使用遗传算法时更加优秀,混合遗传算法能够将路径优化7%左右,因此混合遗传算法满足优化条件。 展开更多
关键词 堆垛机 路径优化 混合遗传算法 蚁群算法 遗传算法
下载PDF
基于粒子-蚁群混合算法的截割头形状优化设计
14
作者 孙玲 贾凯 《有色设备》 2024年第2期46-51,共6页
针对EBH-150型横轴式掘进机截割头在截割过程中遇到的载荷波动问题,采用粒子-蚁群混合算法对现有抛物线形截割头进行优化设计。利用Matlab数值模拟软件,对截齿的排列参数进行多目标优化,以期减少载荷波动并提升掘进机的工作稳定性。优... 针对EBH-150型横轴式掘进机截割头在截割过程中遇到的载荷波动问题,采用粒子-蚁群混合算法对现有抛物线形截割头进行优化设计。利用Matlab数值模拟软件,对截齿的排列参数进行多目标优化,以期减少载荷波动并提升掘进机的工作稳定性。优化结果显示,截割头的截线间距经过调整后,从外向内逐渐减小,使得单个截齿受力更为均匀。横向载荷波动降低了约62%,其他方向的载荷波动也显著降低,均超过50%。这些改进有效提高了掘进机横摆进刀的稳定性,并有助于延长截割头的使用寿命。尽管优化后的截割头在某些方向上的载荷均值有所增加,但载荷峰值降低,避免了单个截齿的过载现象。总体而言,优化设计取得了理想的效果,但仍需通过实际应用进行验证。本研究为掘进机截割头的优化设计提供了一种有效的算法支持,对于提高掘进机的工作效率和安全性能具有重要意义。 展开更多
关键词 掘进机 截割头 粒子-蚁群优化 混合算法 MATLAB软件 数值模拟
下载PDF
自适应混合蚁群算法求解带容量约束车辆路径问题
15
作者 辜勇 刘迪 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第12期1686-1695,1704,共11页
针对带容量约束车辆路径问题(capacitated vehicle routing problem,CVRP),提出了一种自适应混合蚁群算法.由蚁群算法生成子回路,为增强跳出局部最优能力,在蚁群算法的状态转移规则和信息素更新规则中引入了自适应机制.基于子回路组合,... 针对带容量约束车辆路径问题(capacitated vehicle routing problem,CVRP),提出了一种自适应混合蚁群算法.由蚁群算法生成子回路,为增强跳出局部最优能力,在蚁群算法的状态转移规则和信息素更新规则中引入了自适应机制.基于子回路组合,由遗传算法构造近似解,根据问题编码特性设计了适应度函数和遗传算子,提高了构造效率,并采用Clark和Wright节约算法将近似解修复成可行解.采用扫描法和2-opt局部优化方法提高可行解的质量.标准算例的实验结果表明,该算法在求解CVRP问题上具有良好的寻优精度和寻优效率.灵敏度分析结果表明蚂蚁数量对算法性能具有显著影响. 展开更多
关键词 带容量约束车辆路径问题 子回路组合 近似解可行化 自适应混合蚁群算法 灵敏度分析
下载PDF
基于异构网络优化与自适应负荷管理的多微电网调度策略研究 被引量:1
16
作者 董硕 尉鹏程 +1 位作者 郝建锋 黄久鸿 《电气应用》 2023年第12期45-53,共9页
针对多微电网调度策略进行研究,提出一种基于异构网络优化与自适应负荷管理的多微电网调度策略。该策略充分利用了多微电网中不同能源网络的互补与协同特性,设计了一种基于Prophet时间序列模型的自适应负荷管理策略,并引入能源协同性指... 针对多微电网调度策略进行研究,提出一种基于异构网络优化与自适应负荷管理的多微电网调度策略。该策略充分利用了多微电网中不同能源网络的互补与协同特性,设计了一种基于Prophet时间序列模型的自适应负荷管理策略,并引入能源协同性指数和能源互补性指数构建异构网络优化模型,运用多目标混合蚁群算法实现多目标优化,旨在保证系统稳定运行的前提下,实现能源的高效利用和负荷平衡。实验结果表明,该方法能够提高多微电网系统的能源利用效率,降低运行成本,提高电网的稳定性和可靠性。 展开更多
关键词 多微电网调度 自适应负荷管理 异构网络优化 多目标混合蚁群算法
下载PDF
Towards energy efficient cloud:an optimized ant colony model for virtual machine placement 被引量:1
17
作者 ZHANG Liumei WANG Yichuan +1 位作者 ZHU Lei JI Wenjiang 《Journal of Communications and Information Networks》 2016年第4期116-132,共17页
A virtual machine placement optimization model based on optimized ant colony algorithm is proposed.The model is able to determine the physical machines suitable for hosting migrated virtual machines.Thus,it solves the... A virtual machine placement optimization model based on optimized ant colony algorithm is proposed.The model is able to determine the physical machines suitable for hosting migrated virtual machines.Thus,it solves the problem of redundant power consumption resulting from idle resource waste of physical machines.First,based on the utilization parameters of the virtual machine,idle resources and energy consumption models are proposed.The models are dedicated to quantifying the features of virtual resource utilization and energy consumption of physical machines.Next,a multi-objective optimization strategy is derived for virtual machine placement in cloud environments.Finally,an optimal virtual machines placement scheme is determined based on feature metrics,multi-objective optimization,and the ant colony algorithm.Experimental results indicate that compared with the traditional genetic algorithms-based MGGA model,the convergence rate is increased by 16%,and the optimized highest average energy consumption is reduced by 18%.The model exhibits advantages in terms of algorithm efficiency and efficacy. 展开更多
关键词 cloud computing energy efficient virtual machine placement multi-objective optimization ant colony optimization
原文传递
基于蚁群和粒子群优化的混合算法求解TSP问题 被引量:18
18
作者 闵克学 葛宏伟 +1 位作者 张毅 梁艳春 《吉林大学学报(信息科学版)》 CAS 2006年第4期402-405,共4页
提出了一种基于蚁群优化和粒子群优化的混合算法求解TSP(Traveling Salesm an Prob lem)问题。在应用蚁群算法对TSP问题的求解过程中,利用粒子群算法对蚁群系统的参数进行优化,其目的是提高蚁群系统的优化性能,使蚁群系统的参数不必靠... 提出了一种基于蚁群优化和粒子群优化的混合算法求解TSP(Traveling Salesm an Prob lem)问题。在应用蚁群算法对TSP问题的求解过程中,利用粒子群算法对蚁群系统的参数进行优化,其目的是提高蚁群系统的优化性能,使蚁群系统的参数不必靠人工经验或反复试验选取,而是通过粒子搜索自适应选取。 展开更多
关键词 蚁群优化 粒子群优化 混合算法 TSP问题
下载PDF
混合智能算法及其在供水水库群优化调度中的应用 被引量:26
19
作者 刘卫林 董增川 王德智 《水利学报》 EI CSCD 北大核心 2007年第12期1437-1443,共7页
将遗传算法中的进化思想和蚁群算法中的群体智能技术有效地耦合,提出了一种基于两者的混合智能算法,应用于供水水库群系统的优化调度研究中。算法利用蚁群算法的并行性、正反馈性以及良好的全局寻优能力,避免搜索陷入局部最优,同时借鉴... 将遗传算法中的进化思想和蚁群算法中的群体智能技术有效地耦合,提出了一种基于两者的混合智能算法,应用于供水水库群系统的优化调度研究中。算法利用蚁群算法的并行性、正反馈性以及良好的全局寻优能力,避免搜索陷入局部最优,同时借鉴遗传算法的进化思想,利用杂交、变异算子来进行局部寻优,使其能快速搜索到全局最优点。在种群随机搜索过程中嵌入确定性的模式搜索,使得算法同时具有随机性和确定性。结合模拟退火思想,构造了罚因子处理约束条件,使该算法对水库优化调度问题以及其他优化问题具有一定的通用性。通过实例验证,并与大系统聚合分解经典算法进行比较,结果表明该算法是可行的和有效的。 展开更多
关键词 混合智能算法 遗传算法 蚁群算法 供水水库群 优化调度
下载PDF
考虑工时不确定的混合流水车间滚动调度方法 被引量:23
20
作者 张洁 秦威 宋代立 《机械工程学报》 EI CAS CSCD 北大核心 2015年第11期99-108,共10页
针对加工时间不确定的混合流水车间动态调度问题,提出一种基于滚动窗口的改进蚁群算法。为实现对事件驱动机制下重调度发生频率的有效缓冲,设计基于交货期偏差容忍度的滚动调度策略。同时为提高调度算法的计算效率,以应对现实生产中工... 针对加工时间不确定的混合流水车间动态调度问题,提出一种基于滚动窗口的改进蚁群算法。为实现对事件驱动机制下重调度发生频率的有效缓冲,设计基于交货期偏差容忍度的滚动调度策略。同时为提高调度算法的计算效率,以应对现实生产中工时偏差的频繁发生,在滚动时域分解方法框架下提出一种改进的蚁群算法。一方面,通过压缩蚂蚁可选路径限制其移动范围,在缩短蚂蚁搜索周期的同时寻求新的解;另一方面,通过适当刺激蚂蚁尝试具有较弱信息素路径,提高所得解的全局性。通过实例仿真,分别对滚动调度策略和动态调度算法性能进行分析验证,得出较优的滚动调度策略参数,并验证了算法的优越性。最后给出实际生产算例,验证了滚动调度方法的有效性。 展开更多
关键词 混合流水车间 工时不确定 滚动调度 蚁群算法
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部