The accurate fault-cause identification for overhead transmission lines supports the operation and maintenance personnel in formulating targeted maintenance strategies and shortening the time of inspecting faulty line...The accurate fault-cause identification for overhead transmission lines supports the operation and maintenance personnel in formulating targeted maintenance strategies and shortening the time of inspecting faulty lines.With the goal of achieving“carbon peak and carbon neutrality”,the schemes for clean energy generation have rapidly developed.Moreover,new energy-consuming equipment has been widely connected to the power grid,and the operating characteristics of the power system have significantly changed.Consequently,these have impacted traditional fault identification methods.Based on the time-frequency characteristics of the fault waveform,new energy-related parameters,and deep learning model,this study proposes a fault identification method suitable for scenarios where a high proportion of new energy is connected to the power grid.Ten parameters related to the causes of transmission line fault and new energy connection scenarios are selected as model characteristic parameters.Further,a fault identification model based on adaptive deep belief networks was constructed,and its effect was verified by field data.展开更多
The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMM...The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.展开更多
This paper presents a method for determining specific models of overhead power lines with presence of corona phenomenon. The obtained models provide stable numerical solutions for computer simulation of transients cau...This paper presents a method for determining specific models of overhead power lines with presence of corona phenomenon. The obtained models provide stable numerical solutions for computer simulation of transients caused by direct lightning strikes. The corona non- linear charge-voltage characteristics obtained from experimental tests are used for identification of the corona parameters based on System Identification Toolbox implemented in Matlab package. Different transfer functions, which give the same waveshapes of overvoltages are de- termined using two parametric models. A circuit representation of the obtained transfer functions is proposed and the corona model is implemented in the EMTP-RV as a hierarchical structure composed of a overhead power line divided into sections with corona branches. Some computer simulations of lightning overvoltages propagated in a typical 220 kV power line due to direct lightning strikes to a line tower are presented. The proposed method and the model implemented in EMTP-RV are still valid for multi-conductor lines and for higher voltages of power lines but new corona nonlinear charge-voltage characteristics are required as an input parameter for the identification procedure.展开更多
Transmission line(TL)Parameter Identification(PI)method plays an essential role in the transmission system.The existing PI methods usually have two limitations:(1)These methods only model for single TL,and can not con...Transmission line(TL)Parameter Identification(PI)method plays an essential role in the transmission system.The existing PI methods usually have two limitations:(1)These methods only model for single TL,and can not consider the topology connection of multiple branches for simultaneous identification.(2)Transient bad data is ignored by methods,and the random selection of terminal section data may cause the distortion of PI and have serious consequences.Therefore,a multi-task PI model considering multiple TLs’spatial constraints and massive electrical section data is proposed in this paper.The Graph Attention Network module is used to draw a single TL into a node and calculate its influence coefficient in the transmission network.Multi-Task strategy of Hard Parameter Sharing is used to identify the conductance ofmultiple branches simultaneously.Experiments show that themethod has good accuracy and robustness.Due to the consideration of spatial constraints,the method can also obtain more accurate conductance values under different training and testing conditions.展开更多
In order to improve the reliability of fault identification of the double-circuit transmission lines on the same tower, a new algorithm for fast protection of double-circuit transmission lines on the same tower based ...In order to improve the reliability of fault identification of the double-circuit transmission lines on the same tower, a new algorithm for fast protection of double-circuit transmission lines on the same tower based on the reactive powers of traveling wave is proposed. With the implementation of S-transform, the initial traveling wave reactive powers are calculated and the change characteristics of reactive power under different fault conditions are studied. The protection criterion is constructed by analyzing the ratio of the reactive powers of the same end on double-circuit transmission lines and the ratio of the reactive powers at both ends on the same line. According to the ratio of reactive power on the same side of the line and both ends of the same line, it is possible to identify whether the faults of the double-circuit line of the same tower occurred in or out of the protection zone. A large number of simulation results show that the protection performance is sensitive and reliable, and quick to respond. The criterion is simple and is basically not affected by fault initial angles, fault types, and transitional resistances.展开更多
基金This work was supported by State Grid Science and Technology Project(B3440821K003).
文摘The accurate fault-cause identification for overhead transmission lines supports the operation and maintenance personnel in formulating targeted maintenance strategies and shortening the time of inspecting faulty lines.With the goal of achieving“carbon peak and carbon neutrality”,the schemes for clean energy generation have rapidly developed.Moreover,new energy-consuming equipment has been widely connected to the power grid,and the operating characteristics of the power system have significantly changed.Consequently,these have impacted traditional fault identification methods.Based on the time-frequency characteristics of the fault waveform,new energy-related parameters,and deep learning model,this study proposes a fault identification method suitable for scenarios where a high proportion of new energy is connected to the power grid.Ten parameters related to the causes of transmission line fault and new energy connection scenarios are selected as model characteristic parameters.Further,a fault identification model based on adaptive deep belief networks was constructed,and its effect was verified by field data.
基金Projects(61004074,61134001,21076179)supported by the National Natural Science Foundation of ChinaProject(2009BAG12A08)supported by the National Key Technology Support Program of China+1 种基金Project(2010QNA5001)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(2012AA06A404,2006AA04Z184)supported by the National High Technology Research and Development Program of China
文摘The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.
基金Project supported by the National Science Center, Poland
文摘This paper presents a method for determining specific models of overhead power lines with presence of corona phenomenon. The obtained models provide stable numerical solutions for computer simulation of transients caused by direct lightning strikes. The corona non- linear charge-voltage characteristics obtained from experimental tests are used for identification of the corona parameters based on System Identification Toolbox implemented in Matlab package. Different transfer functions, which give the same waveshapes of overvoltages are de- termined using two parametric models. A circuit representation of the obtained transfer functions is proposed and the corona model is implemented in the EMTP-RV as a hierarchical structure composed of a overhead power line divided into sections with corona branches. Some computer simulations of lightning overvoltages propagated in a typical 220 kV power line due to direct lightning strikes to a line tower are presented. The proposed method and the model implemented in EMTP-RV are still valid for multi-conductor lines and for higher voltages of power lines but new corona nonlinear charge-voltage characteristics are required as an input parameter for the identification procedure.
基金supported by the National Natural Science Foundation of PR China(42075130)the Postgraduate Research and Innovation Project of Jiangsu Province(1534052101133).
文摘Transmission line(TL)Parameter Identification(PI)method plays an essential role in the transmission system.The existing PI methods usually have two limitations:(1)These methods only model for single TL,and can not consider the topology connection of multiple branches for simultaneous identification.(2)Transient bad data is ignored by methods,and the random selection of terminal section data may cause the distortion of PI and have serious consequences.Therefore,a multi-task PI model considering multiple TLs’spatial constraints and massive electrical section data is proposed in this paper.The Graph Attention Network module is used to draw a single TL into a node and calculate its influence coefficient in the transmission network.Multi-Task strategy of Hard Parameter Sharing is used to identify the conductance ofmultiple branches simultaneously.Experiments show that themethod has good accuracy and robustness.Due to the consideration of spatial constraints,the method can also obtain more accurate conductance values under different training and testing conditions.
文摘In order to improve the reliability of fault identification of the double-circuit transmission lines on the same tower, a new algorithm for fast protection of double-circuit transmission lines on the same tower based on the reactive powers of traveling wave is proposed. With the implementation of S-transform, the initial traveling wave reactive powers are calculated and the change characteristics of reactive power under different fault conditions are studied. The protection criterion is constructed by analyzing the ratio of the reactive powers of the same end on double-circuit transmission lines and the ratio of the reactive powers at both ends on the same line. According to the ratio of reactive power on the same side of the line and both ends of the same line, it is possible to identify whether the faults of the double-circuit line of the same tower occurred in or out of the protection zone. A large number of simulation results show that the protection performance is sensitive and reliable, and quick to respond. The criterion is simple and is basically not affected by fault initial angles, fault types, and transitional resistances.