The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and wate...The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.展开更多
An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain varia...An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.展开更多
To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the result...To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.展开更多
According to Hainan Island's biological characteristics, and existing structure of productivity of tropical crops and local climatic conditions, this paper carries on regional division of tropical crops by fuzzy m...According to Hainan Island's biological characteristics, and existing structure of productivity of tropical crops and local climatic conditions, this paper carries on regional division of tropical crops by fuzzy mathematics. Based on calculation of basic parameters for tl1e formation of production, near-tem optimum models of tropical crops structure of each region was established by means of multi-objective programming, and a far-term grey programming model was set up through the above-mentioned near-term model and prediction of future parameters. Conclusion shows that the near-term programming may raise the profit by 5. 1-55.7 percent and far-tem programming by 54-90 percent, both gainingobvious economic benefits.展开更多
To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is pro...To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.展开更多
This paper estimates the macroeconornic costs of CO2 emission reduction in China employing the input-output analysis with the multi-objective programming approach. The results show that the effect of reducing CO2 emis...This paper estimates the macroeconornic costs of CO2 emission reduction in China employing the input-output analysis with the multi-objective programming approach. The results show that the effect of reducing CO2 emissions on China's economy is significant. Under the present conditions, the estimated macroeconomic costs of CO2 emission reduction in 2010 for China are approximately 3,100-4,024 RMB t-1. The stronger the abatement actions, the higher the macroeconomic costs of per unit emission reduction would be. Excavation industry, oil industry, chemical industry, and metal smelting industry have high potential to abate their CO2 emissions.展开更多
This paper presents the Pareto solutions in continuous multi-objective mathematical programming. We discuss the role of some assumptions on the objective functions and feasible domain, the relationship between them, a...This paper presents the Pareto solutions in continuous multi-objective mathematical programming. We discuss the role of some assumptions on the objective functions and feasible domain, the relationship between them, and compactness, contractibility and fixed point properties of the Pareto sets. The authors have tried to remove the concavity assumptions on the objective functions which are usually used in multi-objective maximization problems. The results are based on constructing a retraction from the feasible domain onto the Pareto-optimal set.展开更多
Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transpor...Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.展开更多
In this paper, a modified method to find the efficient solutions of multi-objective linear fractional programming (MOLFP) problems is presented. While some of the previously proposed methods provide only one efficient...In this paper, a modified method to find the efficient solutions of multi-objective linear fractional programming (MOLFP) problems is presented. While some of the previously proposed methods provide only one efficient solution to the MOLFP problem, this modified method provides multiple efficient solutions to the problem. As a result, it provides the decision makers flexibility to choose a better option from alternatives according to their financial position and their level of satisfaction of objectives. A numerical example is provided to illustrate the modified method and also a real life oriented production problem is modeled and solved.展开更多
In this paper, we shall be interested in characterization of efficient solutions for special classes of problems. These classes consider roughly B-invexity of involved functions. Sufficient and necessary conditions fo...In this paper, we shall be interested in characterization of efficient solutions for special classes of problems. These classes consider roughly B-invexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.展开更多
In this paper, we address bilevel multi-objective programming problems (BMPP) in which the decision maker at each level has multiple objective functions conflicting with each other. Given a BMPP, we show how to constr...In this paper, we address bilevel multi-objective programming problems (BMPP) in which the decision maker at each level has multiple objective functions conflicting with each other. Given a BMPP, we show how to construct two artificial multiobjective programming problems such that any point that is efficient for both the two problems is an efficient solution of the BMPP. Some necessary and sufficient conditions for which the obtained result is applicable are provided. A complete procedure of the implementation of an algorithm for generating efficient solutions for the linear case of BMPP is presented. A numerical example is provided to illustrate how the algorithm operates.展开更多
In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty fu...In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP.展开更多
This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected...This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected functions, and examples are given to show the existence of these functions. By utilizing the new concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for non-differentiable multi-objective programming problem.展开更多
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single...In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.展开更多
The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will ...The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will be unacceptable in engineering practice due to the large amount of evaluation needed for the algorithm. So, a new interactive optimization algorithm-interactive multi-objective particle swarm optimization (IMOPSO) is presented. IMOPSO is efficient, simple and operable. The decision-maker can expediently determine the accurate preference in IMOPSO. IMOPSO is used to perform the pylon structure optimization design of an airplane, and a satisfactory design is achieved after only 12 generations of IMOPSO evolutions. Compared with original design, the maximum displacement of the satisfactory design is reduced, and the mass of the satisfactory design is decreased for 22%.展开更多
This paper considers multiobjective integer programming problems involving random variables in constraints. Using the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are t...This paper considers multiobjective integer programming problems involving random variables in constraints. Using the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are transformed into deterministic ones. For solving transformed deterministic problems efficiently, we also introduce genetic algorithms with double strings for nonlinear integer programming problems. Taking into account vagueness of judgments of the decision maker, an interactive fuzzy satisficing method is presented. In the proposed interactive method, after determineing the fuzzy goals of the decision maker, a satisficing solution for the decision maker is derived efficiently by updating the reference membership levels of the decision maker. An illustrative numerical example is provided to demonstrate the feasibility and efficiency of the proposed method.展开更多
This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective functio...This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective function values are smaller than or equal to target variables, fuzzy goals of the decision makers are introduced. Using the fractile criteria to optimize the target variables under the condition that the degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible levels, the original random fuzzy two-level integer programming problems are reduced to deterministic ones. Through the introduction of genetic algorithms with double strings for nonlinear integer programming problems, interactive fuzzy programming to derive a satisfactory solution for the decision maker at the upper level in consideration of the cooperative relation between decision makers is presented. An illustrative numerical example demonstrates the feasibility and efficiency of the proposed method.展开更多
Genotype x environmental interaction (GxE) can lead to differences in performance of genotypes over environments. GxE analysis can be used to analyze the stability of genotypes and the value of test locations. We deve...Genotype x environmental interaction (GxE) can lead to differences in performance of genotypes over environments. GxE analysis can be used to analyze the stability of genotypes and the value of test locations. We developed an Rlanguage program (RGxE) that computes univariate stability statistics, descriptive statistics, pooled ANOVA, genotype F ratio across location and environment, cluster analysis for location, and location correlation with average location performance. Univariate stability statistics calculated are regression slope (bi), deviation from regression (S2d), Shukla’s variance (σi2), S square Wricke’s ecovalence (Wi), and Kang’s yield stability (YSi). RGxE is free and intended for use by scientists studying performance of polygenic or quantitative traits over multiple environments. In the present paper we provide the RGxE program and its components along with an example input data and outputs. Additionally, the RGxE program along with associated files is also available on GitHub at https://github.com/mahendra1/RGxE, http://cucurbitbreeding.com/todd-wehner/publications/software-sas-r-project/? and http://cuke.hort.ncsu.edu/cucurbit/wehner/software.html.展开更多
With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th...With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.展开更多
基金supported by the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200701028)the Humanities and Social Science Foundation Program of Hohai University (Grant No. 2008421411)
文摘The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
基金supported by the National Natural Science Foundation of China(71601183 71571190)
文摘An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(72001213)the basic research program of Natural Science of Shaanxi Province,China(2021JQ-369).
文摘To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.
文摘According to Hainan Island's biological characteristics, and existing structure of productivity of tropical crops and local climatic conditions, this paper carries on regional division of tropical crops by fuzzy mathematics. Based on calculation of basic parameters for tl1e formation of production, near-tem optimum models of tropical crops structure of each region was established by means of multi-objective programming, and a far-term grey programming model was set up through the above-mentioned near-term model and prediction of future parameters. Conclusion shows that the near-term programming may raise the profit by 5. 1-55.7 percent and far-tem programming by 54-90 percent, both gainingobvious economic benefits.
基金Supported by the National Natural Science Foundation of China(71103034)the Natural Science Foundation of Jiangsu Province(bk2011084)
文摘To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.
基金supported by the National Natural Science Foundation of China under Grant Nos. 70825001 and 70941039
文摘This paper estimates the macroeconornic costs of CO2 emission reduction in China employing the input-output analysis with the multi-objective programming approach. The results show that the effect of reducing CO2 emissions on China's economy is significant. Under the present conditions, the estimated macroeconomic costs of CO2 emission reduction in 2010 for China are approximately 3,100-4,024 RMB t-1. The stronger the abatement actions, the higher the macroeconomic costs of per unit emission reduction would be. Excavation industry, oil industry, chemical industry, and metal smelting industry have high potential to abate their CO2 emissions.
文摘This paper presents the Pareto solutions in continuous multi-objective mathematical programming. We discuss the role of some assumptions on the objective functions and feasible domain, the relationship between them, and compactness, contractibility and fixed point properties of the Pareto sets. The authors have tried to remove the concavity assumptions on the objective functions which are usually used in multi-objective maximization problems. The results are based on constructing a retraction from the feasible domain onto the Pareto-optimal set.
文摘Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.
文摘In this paper, a modified method to find the efficient solutions of multi-objective linear fractional programming (MOLFP) problems is presented. While some of the previously proposed methods provide only one efficient solution to the MOLFP problem, this modified method provides multiple efficient solutions to the problem. As a result, it provides the decision makers flexibility to choose a better option from alternatives according to their financial position and their level of satisfaction of objectives. A numerical example is provided to illustrate the modified method and also a real life oriented production problem is modeled and solved.
文摘In this paper, we shall be interested in characterization of efficient solutions for special classes of problems. These classes consider roughly B-invexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.
文摘In this paper, we address bilevel multi-objective programming problems (BMPP) in which the decision maker at each level has multiple objective functions conflicting with each other. Given a BMPP, we show how to construct two artificial multiobjective programming problems such that any point that is efficient for both the two problems is an efficient solution of the BMPP. Some necessary and sufficient conditions for which the obtained result is applicable are provided. A complete procedure of the implementation of an algorithm for generating efficient solutions for the linear case of BMPP is presented. A numerical example is provided to illustrate how the algorithm operates.
文摘In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP.
文摘This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected functions, and examples are given to show the existence of these functions. By utilizing the new concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for non-differentiable multi-objective programming problem.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.
基金Foundation item: National Natural Science Foundation of China (10377015)
文摘The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will be unacceptable in engineering practice due to the large amount of evaluation needed for the algorithm. So, a new interactive optimization algorithm-interactive multi-objective particle swarm optimization (IMOPSO) is presented. IMOPSO is efficient, simple and operable. The decision-maker can expediently determine the accurate preference in IMOPSO. IMOPSO is used to perform the pylon structure optimization design of an airplane, and a satisfactory design is achieved after only 12 generations of IMOPSO evolutions. Compared with original design, the maximum displacement of the satisfactory design is reduced, and the mass of the satisfactory design is decreased for 22%.
文摘This paper considers multiobjective integer programming problems involving random variables in constraints. Using the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are transformed into deterministic ones. For solving transformed deterministic problems efficiently, we also introduce genetic algorithms with double strings for nonlinear integer programming problems. Taking into account vagueness of judgments of the decision maker, an interactive fuzzy satisficing method is presented. In the proposed interactive method, after determineing the fuzzy goals of the decision maker, a satisficing solution for the decision maker is derived efficiently by updating the reference membership levels of the decision maker. An illustrative numerical example is provided to demonstrate the feasibility and efficiency of the proposed method.
文摘This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective function values are smaller than or equal to target variables, fuzzy goals of the decision makers are introduced. Using the fractile criteria to optimize the target variables under the condition that the degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible levels, the original random fuzzy two-level integer programming problems are reduced to deterministic ones. Through the introduction of genetic algorithms with double strings for nonlinear integer programming problems, interactive fuzzy programming to derive a satisfactory solution for the decision maker at the upper level in consideration of the cooperative relation between decision makers is presented. An illustrative numerical example demonstrates the feasibility and efficiency of the proposed method.
文摘Genotype x environmental interaction (GxE) can lead to differences in performance of genotypes over environments. GxE analysis can be used to analyze the stability of genotypes and the value of test locations. We developed an Rlanguage program (RGxE) that computes univariate stability statistics, descriptive statistics, pooled ANOVA, genotype F ratio across location and environment, cluster analysis for location, and location correlation with average location performance. Univariate stability statistics calculated are regression slope (bi), deviation from regression (S2d), Shukla’s variance (σi2), S square Wricke’s ecovalence (Wi), and Kang’s yield stability (YSi). RGxE is free and intended for use by scientists studying performance of polygenic or quantitative traits over multiple environments. In the present paper we provide the RGxE program and its components along with an example input data and outputs. Additionally, the RGxE program along with associated files is also available on GitHub at https://github.com/mahendra1/RGxE, http://cucurbitbreeding.com/todd-wehner/publications/software-sas-r-project/? and http://cuke.hort.ncsu.edu/cucurbit/wehner/software.html.
文摘With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.