期刊文献+
共找到804篇文章
< 1 2 41 >
每页显示 20 50 100
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
1
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Prediction Model-based Multi-objective Optimization for Mix-ratio Design of Recycled Aggregate Concrete
2
作者 CHEN Tao WU Di YAO Xiaojun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1507-1517,共11页
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio... The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method. 展开更多
关键词 recycled coarse aggregate mix ratio multi-objective optimization prediction model compressive strength
下载PDF
Multi-Objective Adaptive Optimization Model Predictive Control:Decreasing Carbon Emissions from a Zinc Oxide Rotary Kiln
3
作者 Ke Wei Keke Huang +1 位作者 Chunhua Yang Weihua Gui 《Engineering》 SCIE EI CAS CSCD 2023年第8期96-105,共10页
The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality ... The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality is putting new demands on the industry,including green production and the use of fewer resources;thus,traditional stability control is no longer suitable for multi-objective control tasks.Although researchers have revealed the principle of the rotary kiln and set up computational fluid dynamics(CFD)simulation models to study its dynamics,these models cannot be directly applied to process control due to their high computational complexity.To address these issues,this paper proposes a multi-objective adaptive optimization model predictive control(MAO-MPC)method based on sparse identification.More specifically,with a large amount of data collected from a CFD model,a sparse regression problem is first formulated and solved to obtain a reduction model.Then,a two-layered control framework including real-time optimization(RTO)and model predictive control(MPC)is designed.In the RTO layer,an optimization problem with the goal of achieving optimal operation performance and the lowest possible resource consumption is set up.By solving the optimization problem in real time,a suitable setting value is sent to the MPC layer to ensure that the zinc oxide rotary kiln always functions in an optimal state.Our experiments show the strength and reliability of the proposed method,which reduces the usage of coal while maintaining high profits. 展开更多
关键词 Zinc oxide rotary kiln model reduction Sparse identification Real-time optimization model predictive control Process control
下载PDF
Finite-time economic model predictive control for optimal load dispatch and frequency regulation in interconnected power systems
4
作者 Yubin Jia Tengjun Zuo +3 位作者 Yaran Li Wenjun Bi Lei Xue Chaojie Li 《Global Energy Interconnection》 EI CSCD 2023年第3期355-362,共8页
This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys... This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm. 展开更多
关键词 Economic model predictive control Finite-time convergence optimal load dispatch Frequency stability
下载PDF
Dynamics modeling and optimal control for multi-information diffusion in Social Internet of Things
5
作者 Yaguang Lin Xiaoming Wang +1 位作者 Liang Wang Pengfei Wan 《Digital Communications and Networks》 SCIE CSCD 2024年第3期655-665,共11页
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for... As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method. 展开更多
关键词 Social Internet of Things Information diffusion Dynamics modeling Trend prediction optimal control
下载PDF
Predictive control for greenhouse temperature and humidity and energy optimization by improved NMPC objective function algorithm
6
作者 Lina Wang Ying Zhang +2 位作者 Mengjie Xu Qiuhui Liu Binrui Wang 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第5期128-136,共9页
Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operat... Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices. 展开更多
关键词 greenhouse environmental control greenhouse energy optimization nonlinear model predictive control objective function improvement
原文传递
Optimal dispatching method for integrated energy system based on robust economic model predictive control considering source-load power interval prediction 被引量:3
7
作者 Yang Yu Jiali Li Dongyang Chen 《Global Energy Interconnection》 EI CAS CSCD 2022年第5期564-578,共15页
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti... Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved. 展开更多
关键词 Integrated energy system Source-load uncertainty Interval prediction Robust economic model predictive control optimal dispatching.
下载PDF
Multi-objective nonlinear model predictive control through switching cost functions and its applications to chemical processes 被引量:1
8
作者 何德峰 余世明 俞立 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第10期1662-1669,共8页
This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satis... This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satisfy different performance criteria imposed at different sampling times.In order to ensure recursive feasibility of the switching MOMPC and stability of the resulted closed-loop system,the dual-mode control method is used to design the switching MOMPC controller.In this method,a local control law with some free-parameters is constructed using the control Lyapunov function technique to enlarge the terminal state set of MOMPC.The correction term is computed if the states are out of the terminal set and the free-parameters of the local control law are computed if the states are in the terminal set.The recursive feasibility of the MOMPC and stability of the resulted closed-loop system are established in the presence of constraints and arbitrary switches between cost functions.Finally,implementation of the switching MOMPC controller is demonstrated with a chemical process example for the continuous stirred tank reactor. 展开更多
关键词 Nonlinear system model predictive control multi-objective control Switched control Continuous stirred tank reactor
下载PDF
Multiobjective economic model predictive control using utopia-tracking for the wet flue gas desulphurization system 被引量:1
9
作者 Shan Liu Wenqi Zhong +2 位作者 Xi Chen Li Sun Lukuan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期343-352,共10页
Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hiera... Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hierarchical structure in which the upper optimization layer calculates the steady-state results and the lower control layer is responsible to drive the process to the target point. However, the conventional hierarchical structure does not take the economic performance of the dynamic tracking process into account. To this end, multi-objective economic model predictive control(MOEMPC) is introduced in this paper, which unifies the optimization and control layers in a single stage. The objective functions are formulated in terms of a dynamic horizon and to balance the stability and economic performance. In the MOEMPC scheme, economic performance and SO_(2) emission performance are guaranteed by tracking a set of utopia points during dynamic transitions. The terminal penalty function and stabilizing constraint conditions are designed to ensure the stability of the system. Finally, an optimized control method for the stable operation of the complex desulfurization system has been established. Simulation results demonstrate that MOEMPC is superior over another control strategy in terms of economic performance and emission reduction, especially when the desulphurization system suffers from frequent flue gas disturbances. 展开更多
关键词 Desulphurization system Economics Economic model predictive control Flue gas optimization Utopia point
下载PDF
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control 被引量:9
10
作者 钟伟民 皮道映 孙优贤 《Journal of Central South University of Technology》 EI 2005年第5期591-595,共5页
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established... A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function nonlinear optimization
下载PDF
Dynamic optimization oriented modeling and nonlinear model predictive control of the wet limestone FGD system 被引量:2
11
作者 Lukuan Yang Wenqi Zhong +2 位作者 Li Sun Xi Chen Yingjuan Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期832-845,共14页
Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(W... Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems. 展开更多
关键词 Wet limestone flue gas desulphurization(WFGD)system modelING Nonlinear model predictive control(NMPC) multi-objective optimization
下载PDF
Predictive Functional Controller with a Similar Proportional Integral Optimal Regulator Structure:Comparison with Traditional Predic-tive Functional Controller and Application to Heavy Oil Coking Equipment 被引量:1
12
作者 张日东 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第2期247-253,共7页
By extending the system's state variables,a novel predictive functional controller has been developed.The structure of this controller is similar to that of classical proportional integral(PI)optimal controller an... By extending the system's state variables,a novel predictive functional controller has been developed.The structure of this controller is similar to that of classical proportional integral(PI)optimal controller and in-cludes a control block that can perform a feed-forward control of future P-step set points.It considers both the state variables and the output errors in its cost function,which results in enhanced control performance compared with traditional state space predictive functional control(TSSPFC)methods that consider only the predictive output er-rors.The predictive functional controller(PFC)has been compared with TSSPFC in terms of tracking ability,dis-turbance rejection,and also based on its application to heavy oil coking equipment.The results obtained show the effectiveness of the controller. 展开更多
关键词 state space model PI optimal regulator predictive functional control
下载PDF
Tube Model Predictive Control Based Cyber-attack-resilient Optimal Voltage Control Strategy in Wind Farms
13
作者 Zhenming Li Minghao Wang +4 位作者 Yunfeng Yan Donglian Qi Zhao Xu Jianliang Zhang Zezhou Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期530-538,共9页
Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids.In order to achieve optimal voltage operation,authentic grid information is widely needed in the sensing and... Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids.In order to achieve optimal voltage operation,authentic grid information is widely needed in the sensing and actuating processes.However,this may induce system vulnerable to malicious cyber-attacks.To this end,a tube model predictive control-based cyber-attack-resilient optimal voltage control method is proposed to achieve voltage stability against malicious cyber-attacks.The proposed method consists of two cascaded model predictive controllers(MPC),which outperform other peer control methods in effective alleviation of adverse effects from cyber-attacks on actuators and sensors of the system.Finally,efficiency of the proposed method is evaluated in sensor and actuator cyber-attack cases based on a modified IEEE 14 buses system and IEEE 118 buses system.Index Terms-Attack-resilient control,optimal voltage control,tube-based model predictive control,wind farm-connected power system. 展开更多
关键词 Attack-resilient control optimal voltage control tube-based model predictive control wind farm-connected power system
原文传递
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs 被引量:17
14
作者 Yi Zhang Xiangjie Liu Bin Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期125-135,共11页
Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presen... Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presents a distributed model predictive control DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints GRCs, load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed-loop performance, and computational burden with the physical constraints. © 2014 Chinese Association of Automation. 展开更多
关键词 Asynchronous generators Electric control equipment Electric fault currents Electric frequency control Electric load management Electric power systems model predictive control optimization Press load control WIND Wind turbines
下载PDF
A Pragmatic Approach for Assessing the Economic Performance of Model Predictive Control Systems and Its Industrial Application 被引量:12
15
作者 赵超 苏宏业 +1 位作者 古勇 褚建 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第2期241-250,共10页
In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gau... In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system. 展开更多
关键词 economic performance assessment model predictive control linear quadratic Gaussian benchmark steady-state model based optimization
下载PDF
Aircraft Landing Gear Control with Multi-Objective Optimization Using Generalized Cell Mapping 被引量:3
16
作者 孙建桥 贾腾 +3 位作者 熊夫睿 秦志昌 吴卫国 丁千 《Transactions of Tianjin University》 EI CAS 2015年第2期140-146,共7页
This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sli... This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain. 展开更多
关键词 LANDING GEAR SLIDING mode control model uncertainty multi-objective optimization GENERALIZED cellmapping
下载PDF
Energy Control of Plug-In Hybrid Electric Vehicles Using Model Predictive Control With Route Preview 被引量:4
17
作者 Yang Zhao Yanguang Cai Qiwen Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1948-1955,共8页
The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historic... The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy. 展开更多
关键词 Energy management model predictive control(MPC) optimal control plug-in hybrid electric vehicle(PHEV)
下载PDF
Distributed Model Predictive Control with Actuator Saturation for Markovian Jump Linear System 被引量:2
18
作者 Yan Song Haifeng Lou Shuai Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第4期374-381,共8页
This paper is concerned with the distributed model predictive control (MPC) problem for a class of discrete-time Markovian jump linear systems (MJLSs) subject to actuator saturation and polytopic uncertainty in system... This paper is concerned with the distributed model predictive control (MPC) problem for a class of discrete-time Markovian jump linear systems (MJLSs) subject to actuator saturation and polytopic uncertainty in system matrices. The global system is decomposed into several subsystems which coordinate with each other. A set of distributed controllers is designed by solving a min-max optimization problem in terms of the solutions of linear matrix inequalities (LMIs). An iterative algorithm is developed to achieve the online computation. Finally, a simulation example is employed to show the effectiveness of the proposed algorithm. © 2014 Chinese Association of Automation. 展开更多
关键词 Actuators ALGORITHMS Iterative methods Linear matrix inequalities Linear systems Markov processes Matrix algebra model predictive control optimization predictive control systems Robustness (control systems)
下载PDF
DISOPE distributed model predictive control of cascade systems with network communication 被引量:1
19
作者 Yan ZHANG Shaoyuan LI 《控制理论与应用(英文版)》 EI 2005年第2期131-138,共8页
A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the d... A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm. 展开更多
关键词 Cascade systems Dynamic integrated system optimization and parameter estimation (DISOPE) model predictive control (MPC) Distributed control system (DCS) Autonomous agents Fossil fuel power unit (FFPU)
下载PDF
Neural Network Predictive Control of Variable-pitch Wind Turbines Based on Small-world Optimization Algorithm 被引量:8
20
作者 WANG Shuangxin LI Zhaoxia LIU Hairui 《中国电机工程学报》 EI CSCD 北大核心 2012年第30期I0015-I0015,17,共1页
通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述... 通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述方法应用于变桨距风电机组启动并网时的转速控制,提出一种基于混沌小世界优化算法的神经网络预测控制策略,其预测模型由基于现场数据的神经网络模型建立。仿真与实际测试结果表明,该系统可以根据风速扰动提前预测电机的转速变化,使控制器超前动作,保证系统输出跟踪参考轨迹的方向稳步改变,确保风电机组平稳并网。 展开更多
关键词 优化算法 小世界 风力发电机组 预测控制 神经网络 变桨距 实时编码 混沌映射
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部