Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is estab...Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is established which combines the ecology and power generation. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of ecological water demand as objectives, and water quantity balance of reservoir, reservoir storage, discharge flow, output and so on as constraints. Chaotic genetic arithmetic is developed to solve the optimal model. An example is studied, showing that the annual generation of the proposed model is 8 million kW?h less than that model without ecology consideration, which is about 0.28 percent. But the proposed model is in favor of river ecology protection, and can promote the sustainable utilization of water resources. So it is worthy and necessary for the optimal operation of hydropower reservoir with ecology consideration.展开更多
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori...Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.展开更多
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev...Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.展开更多
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t...In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.展开更多
A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting...A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting mechanism and Pareto-optimal archive are introduced into the particle swarm optimization and an improved multi-objective particle swarm optimization (IMOPSO) is proposed. The IMOPSO is employed to solve the optimal model and obtain the Pareto-optimal front. The multi-objective optimal operation of Wanjiazhai Reservoir during the spring breakup was investigated with three typical flood hydrographs. The results show that the former method is able to obtain the Pareto-optimal front with a uniform distribution property. Different regions (A, B, C) of the Pareto-optimal front correspond to the optimized schemes in terms of the objectives of sediment deposition, sediment deposition and power generation, and power generation, respectively. The level hydrographs and outflow hydrographs show the operation of the reservoir in details. Compared with the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), IMOPSO has close global optimization capability and is suitable for multi-objective optimization problems.展开更多
This paper includes an application of Differential Evolution (DE) for the optimal operation of multipurpose reservoir. The objective of the study is to maximize the hydropower production. The constraints for the optim...This paper includes an application of Differential Evolution (DE) for the optimal operation of multipurpose reservoir. The objective of the study is to maximize the hydropower production. The constraints for the optimization problem are reservoir capacity, turbine release capacity constraints, irrigation supply demand constraints and storage continuity. For initializing population, the upper and lower bounds of decision variables are fixed. The fitness of each vector is evaluated. The mutation and recombination is performed. The control parameters, i.e., population size, crossover constant and the weight are fixed according to their fitness value. This procedure is performed for the ten different strategies of DE. Sensitivity analysis performed for ten strategies of DE suggested that, De/best/1/bin is the best strategy which gives optimal solution. The DE algorithm application is presented through Jayakwadi project stage-I, Maharashtra State, India. Genetic algorithm is utilized as a comparative approach to assess the ability of DE. The results of GA and ten DE strategies for the given parameters indicated that both the results are comparable. The model is run for dependable inflows. Monthly maximized hydropower production and irrigation releases are presented. These values will be the basis for decision maker to take decisions regarding operation policy of the reservoir. Results of application of DE model indicate that the maximized hydropower production is 30.885 ×106 kwh and the cor-responding irrigation release is 928.44 Mm3.展开更多
In the present study, a Linear Programming (LP) model is developed for the conjunctive use of surface water and ground water to obtain the optimal operating policy for a multipurpose single reservoir. The objective of...In the present study, a Linear Programming (LP) model is developed for the conjunctive use of surface water and ground water to obtain the optimal operating policy for a multipurpose single reservoir. The objective of the present study is to maximize the net benefit from the command area under consideration. The constraints imposed on the objective function are maximum and minimum irrigation demands, reservoir storages and canal capacity. The model takes into account the continuity constraint which includes inflows in to the reservoir, releases for irrigation, releases for hydro-power generation, evaporation losses, feeder canal releases, initial and final storages in the reservoir in each time period. The developed model is applied to the case study of Jayakwadi reservoir stage-I, built across river Godavari, Maharashtra, India. Initially the model is solved for the availability of surface water which results in net benefit of 3373.45 million rupees with irrigation intensity is 57.07%. Next the model solved by considering the availability of surface water and available potential of groundwater in the area, which results in net benefits of 3590.02 million rupees with an intensity of irrigation 58.48%. The present model takes in to account the socio-economic requirement of growing the essential crops to meet the requirement of the society. The model has also generated the canal wise optimal releases for irrigation and power, monthly utilization of groundwater, storages in the reservoir at the end of every month and corresponding head over the turbine.展开更多
This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply,drought analysis,and evolutionary optimization.This study demonstrates that simultaneous supply of do...This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply,drought analysis,and evolutionary optimization.This study demonstrates that simultaneous supply of downstream environmental flow of reservoir as well as water demand is challenging in the semi-arid area especially in dry years.In this study,water supply and environmental flow supply were 40%and 30%in the droughts,respectively.Moreover,mean errors of supplying water demand as well as environmental flow in dry years were 6 and 9 m3/s,respectively.Hence,these results highlight that ecological stresses of the downstream aquatic habitats as well as water supply loss are considerably escalated in dry years,which implies even using environmental optimal operation is not able to protect downstream aquatic habitats properly in the severe droughts.Moreover,available storage in reservoir will be remarkably reduced(averagely more than 30×106 m3 compared with optimal storage equal to 70×106 m3),which implies strategic storage of reservoir might be threatened.Among used evolutionary algorithms,particle swarm optimization(PSO)was selected as the best algorithm for solving the novel proposed objective function.The significance of this study is to propose a novel objective function to optimize reservoir operation in which environmental flow supply is directly addressed and integrated with drought analysis.This novel form of optimization system can overcome uncertainties of the conventional objective function due to considering environmental flow in the objective function as well as drought analysis in the context of reservoir operation especially applicable in semi-arid areas.The results indicate that using either other water resources for water supply or reducing water demand is the only solution for managing downstream ecological impacts of the river ecosystem.In other words,the results highlighted that replanning of water resources in the study area is necessary.Replacing the conventional optimization system for reservoir operation in the semi-arid area with proposed optimization system is recommendable to minimize the negotiations between stakeholders and environmental managers.展开更多
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op...A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect.展开更多
The effects of optimized operation principles implemented at reservoirs on the Wujiang River in southwest China between September 2009 and April 2010 under drought conditions were analyzed based on operational data co...The effects of optimized operation principles implemented at reservoirs on the Wujiang River in southwest China between September 2009 and April 2010 under drought conditions were analyzed based on operational data collected from the Guizhou Wujiang Hydropower Development Co., Ltd. A set of linear regression equations was developed to identify the key factors impacting the electric power generation at reservoirs. A 59% reduction in the inflow discharge at the Hongjiadu Reservoir led to a decrease of only 38% in the total electric power generation at the Hongjiadu, Dongfeng, Suofengying, and Wujiangdu reservoirs on the Wujiang River, indicating that optimized operation can play an important role in drought management. The water level and the amount of other water inputs at the Hongjiadu Reservoir and the outflow discharge at all of the reservoirs except the Wujiangdu Reservoir were key factors affecting the total electric power generation at reservoirs on the Wujiang River under optimized operation.展开更多
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so...Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.展开更多
In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimizati...In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.展开更多
This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transf...This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO) algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.展开更多
Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river...Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.展开更多
In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distribut...In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.展开更多
The cascade hydropower system composed of Pangduo reservoir and Zhikong reservoir are formed on the middlereach of the main Lasahe river. For giving full play of joint compensation effect of the two reservoirs, the pa...The cascade hydropower system composed of Pangduo reservoir and Zhikong reservoir are formed on the middlereach of the main Lasahe river. For giving full play of joint compensation effect of the two reservoirs, the paper studied the joint operationscheme for Pangduo reservoir and Zhikong reservoir. Based on the respective operation scheme, a reservoir group joint operationmodel is built, the model is solved by the simulation- optimization method, and then the practical and operational scheme isachieved. The scheme could give full play of the joint regulation and storage effect of the reservoir group and improve effectivelythe utilization factor of hydropower resources.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of re...The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.展开更多
For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a mult...For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.展开更多
A geothermal demonstration exploitation area will be established in the Enhanced Geothermal System of the Qiabuqia field, Gonghe Basin, Qinghai–Xizang Plateau in China. Selection of operational parameters for geother...A geothermal demonstration exploitation area will be established in the Enhanced Geothermal System of the Qiabuqia field, Gonghe Basin, Qinghai–Xizang Plateau in China. Selection of operational parameters for geothermal field extraction is thus of great significance to realize the best production performance. A novel integrated method of finite element and multi-objective optimization has been employed to obtain the optimal scheme for thermal extraction from the Gonghe Basin. A thermal-hydraulic-mechanical coupling model(THM) is established to analyze the thermal performance. From this it has been found that there exists a contraction among different heat extraction indexes. Parametric study indicates that injection mass rate(Q_(in)) is the most sensitive parameter to the heat extraction, followed by well spacing(WS) and injection temperature(T_(in)). The least sensitive parameter is production pressure(p_(out)). The optimal combination of operational parameters acquired is such that(T_(in), p_(out), Q_(in), WS) equals(72.72°C, 30.56 MPa, 18.32 kg/s, 327.82 m). Results indicate that the maximum electrical power is 1.41 MW for the optimal case over 20 years. The thermal break has been relieved and the pressure difference reduced by 8 MPa compared with the base case. The optimal case would extract 50% more energy than that of a previous case and the outcome will provide a remarkable reference for the construction of Gonghe project.展开更多
文摘Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is established which combines the ecology and power generation. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of ecological water demand as objectives, and water quantity balance of reservoir, reservoir storage, discharge flow, output and so on as constraints. Chaotic genetic arithmetic is developed to solve the optimal model. An example is studied, showing that the annual generation of the proposed model is 8 million kW?h less than that model without ecology consideration, which is about 0.28 percent. But the proposed model is in favor of river ecology protection, and can promote the sustainable utilization of water resources. So it is worthy and necessary for the optimal operation of hydropower reservoir with ecology consideration.
基金supported by the Foundation of the Scientific and Technological Innovation Team of Colleges and Universities in Henan Province(Grant No.181RTSTHN009)the Foundation of the Key Laboratory of Water Environment Simulation and Treatment in Henan Province(Grant No.2017016).
文摘Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.
基金the National Natural Science Foundation of China(62076225,62073300)the Natural Science Foundation for Distinguished Young Scholars of Hubei(2019CFA081)。
文摘Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.112-2221-E-011-115 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei 10607,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciated.
文摘In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.
基金National Science Fund for Distinguished Young Scholars (No.50725929)National Natural Science Foundation ofChina (No.50539060,50679052)
文摘A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting mechanism and Pareto-optimal archive are introduced into the particle swarm optimization and an improved multi-objective particle swarm optimization (IMOPSO) is proposed. The IMOPSO is employed to solve the optimal model and obtain the Pareto-optimal front. The multi-objective optimal operation of Wanjiazhai Reservoir during the spring breakup was investigated with three typical flood hydrographs. The results show that the former method is able to obtain the Pareto-optimal front with a uniform distribution property. Different regions (A, B, C) of the Pareto-optimal front correspond to the optimized schemes in terms of the objectives of sediment deposition, sediment deposition and power generation, and power generation, respectively. The level hydrographs and outflow hydrographs show the operation of the reservoir in details. Compared with the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), IMOPSO has close global optimization capability and is suitable for multi-objective optimization problems.
文摘This paper includes an application of Differential Evolution (DE) for the optimal operation of multipurpose reservoir. The objective of the study is to maximize the hydropower production. The constraints for the optimization problem are reservoir capacity, turbine release capacity constraints, irrigation supply demand constraints and storage continuity. For initializing population, the upper and lower bounds of decision variables are fixed. The fitness of each vector is evaluated. The mutation and recombination is performed. The control parameters, i.e., population size, crossover constant and the weight are fixed according to their fitness value. This procedure is performed for the ten different strategies of DE. Sensitivity analysis performed for ten strategies of DE suggested that, De/best/1/bin is the best strategy which gives optimal solution. The DE algorithm application is presented through Jayakwadi project stage-I, Maharashtra State, India. Genetic algorithm is utilized as a comparative approach to assess the ability of DE. The results of GA and ten DE strategies for the given parameters indicated that both the results are comparable. The model is run for dependable inflows. Monthly maximized hydropower production and irrigation releases are presented. These values will be the basis for decision maker to take decisions regarding operation policy of the reservoir. Results of application of DE model indicate that the maximized hydropower production is 30.885 ×106 kwh and the cor-responding irrigation release is 928.44 Mm3.
文摘In the present study, a Linear Programming (LP) model is developed for the conjunctive use of surface water and ground water to obtain the optimal operating policy for a multipurpose single reservoir. The objective of the present study is to maximize the net benefit from the command area under consideration. The constraints imposed on the objective function are maximum and minimum irrigation demands, reservoir storages and canal capacity. The model takes into account the continuity constraint which includes inflows in to the reservoir, releases for irrigation, releases for hydro-power generation, evaporation losses, feeder canal releases, initial and final storages in the reservoir in each time period. The developed model is applied to the case study of Jayakwadi reservoir stage-I, built across river Godavari, Maharashtra, India. Initially the model is solved for the availability of surface water which results in net benefit of 3373.45 million rupees with irrigation intensity is 57.07%. Next the model solved by considering the availability of surface water and available potential of groundwater in the area, which results in net benefits of 3590.02 million rupees with an intensity of irrigation 58.48%. The present model takes in to account the socio-economic requirement of growing the essential crops to meet the requirement of the society. The model has also generated the canal wise optimal releases for irrigation and power, monthly utilization of groundwater, storages in the reservoir at the end of every month and corresponding head over the turbine.
文摘This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply,drought analysis,and evolutionary optimization.This study demonstrates that simultaneous supply of downstream environmental flow of reservoir as well as water demand is challenging in the semi-arid area especially in dry years.In this study,water supply and environmental flow supply were 40%and 30%in the droughts,respectively.Moreover,mean errors of supplying water demand as well as environmental flow in dry years were 6 and 9 m3/s,respectively.Hence,these results highlight that ecological stresses of the downstream aquatic habitats as well as water supply loss are considerably escalated in dry years,which implies even using environmental optimal operation is not able to protect downstream aquatic habitats properly in the severe droughts.Moreover,available storage in reservoir will be remarkably reduced(averagely more than 30×106 m3 compared with optimal storage equal to 70×106 m3),which implies strategic storage of reservoir might be threatened.Among used evolutionary algorithms,particle swarm optimization(PSO)was selected as the best algorithm for solving the novel proposed objective function.The significance of this study is to propose a novel objective function to optimize reservoir operation in which environmental flow supply is directly addressed and integrated with drought analysis.This novel form of optimization system can overcome uncertainties of the conventional objective function due to considering environmental flow in the objective function as well as drought analysis in the context of reservoir operation especially applicable in semi-arid areas.The results indicate that using either other water resources for water supply or reducing water demand is the only solution for managing downstream ecological impacts of the river ecosystem.In other words,the results highlighted that replanning of water resources in the study area is necessary.Replacing the conventional optimization system for reservoir operation in the semi-arid area with proposed optimization system is recommendable to minimize the negotiations between stakeholders and environmental managers.
基金This work was supported by the Youth Backbone Teachers Training Program of Henan Colleges and Universities under Grant No.2016ggjs-287the Project of Science and Technology of Henan Province under Grant Nos.172102210124 and 202102210269.
文摘A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect.
基金supported by the National Natural Science Foundation of China (Grant No. 51109229)
文摘The effects of optimized operation principles implemented at reservoirs on the Wujiang River in southwest China between September 2009 and April 2010 under drought conditions were analyzed based on operational data collected from the Guizhou Wujiang Hydropower Development Co., Ltd. A set of linear regression equations was developed to identify the key factors impacting the electric power generation at reservoirs. A 59% reduction in the inflow discharge at the Hongjiadu Reservoir led to a decrease of only 38% in the total electric power generation at the Hongjiadu, Dongfeng, Suofengying, and Wujiangdu reservoirs on the Wujiang River, indicating that optimized operation can play an important role in drought management. The water level and the amount of other water inputs at the Hongjiadu Reservoir and the outflow discharge at all of the reservoirs except the Wujiangdu Reservoir were key factors affecting the total electric power generation at reservoirs on the Wujiang River under optimized operation.
基金Supported by the National Natural Science Foundation of China(60073043,70071042,60133010)
文摘Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.
基金supported by the National Natural Science Foundation of China (Grant No. 50679011)
文摘In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.
基金supported by the National Natural Science Foundation of China(Grants No.51339004 and 71171151)
文摘This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO) algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.
文摘Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.
基金The authors gratefully acknowledge the support of the Enhancement Strategy of Multi-Type Energy Integration of Active Distribution Network(YNKJXM20220113).
文摘In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.
文摘The cascade hydropower system composed of Pangduo reservoir and Zhikong reservoir are formed on the middlereach of the main Lasahe river. For giving full play of joint compensation effect of the two reservoirs, the paper studied the joint operationscheme for Pangduo reservoir and Zhikong reservoir. Based on the respective operation scheme, a reservoir group joint operationmodel is built, the model is solved by the simulation- optimization method, and then the practical and operational scheme isachieved. The scheme could give full play of the joint regulation and storage effect of the reservoir group and improve effectivelythe utilization factor of hydropower resources.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金supported by the National Eleventh Five-Year Water Project Funded Projects of China (Grant No.2008ZX07209-002-04)the North China University of Water Resources and Electric Power Funded Projects (Grants No.200907 and 200910)the Scientific Research Fund for the Returned Overseas Chinese Scholars
文摘The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.
基金Science and Technology Project of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.
基金the National Key R&D Program of China(Grant No.2018YFB1501804)the National Natural Science Funds for Excellent Young Scholars of China(Grant No.51822406)+2 种基金the Sichuan Science and Technology Program(2021YJ0389)the Program of Introducing Talents of Discipline to Chinese Universities(111 Plan)(Grant No.B17045)the Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201911414038)。
文摘A geothermal demonstration exploitation area will be established in the Enhanced Geothermal System of the Qiabuqia field, Gonghe Basin, Qinghai–Xizang Plateau in China. Selection of operational parameters for geothermal field extraction is thus of great significance to realize the best production performance. A novel integrated method of finite element and multi-objective optimization has been employed to obtain the optimal scheme for thermal extraction from the Gonghe Basin. A thermal-hydraulic-mechanical coupling model(THM) is established to analyze the thermal performance. From this it has been found that there exists a contraction among different heat extraction indexes. Parametric study indicates that injection mass rate(Q_(in)) is the most sensitive parameter to the heat extraction, followed by well spacing(WS) and injection temperature(T_(in)). The least sensitive parameter is production pressure(p_(out)). The optimal combination of operational parameters acquired is such that(T_(in), p_(out), Q_(in), WS) equals(72.72°C, 30.56 MPa, 18.32 kg/s, 327.82 m). Results indicate that the maximum electrical power is 1.41 MW for the optimal case over 20 years. The thermal break has been relieved and the pressure difference reduced by 8 MPa compared with the base case. The optimal case would extract 50% more energy than that of a previous case and the outcome will provide a remarkable reference for the construction of Gonghe project.