This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the...This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the mutation operation. The proposed PNSIA algorithm is also extended to handle mixed variables, such as transformer taps and reactive power source in- stallation, using a simple scheme. PNSIA applied for optimal power system reactive power dispatch is evaluated on an IEEE 30-bus power system and a practical 118-bus power system in which the control of bus voltages, tap position of transformers and reactive power sources are involved to minimize the transmission loss of the power system. Simulation results showed that the proposed approach is superior to current methods for finding the optimal solution, in terms of both solution quality and algorithm robustness.展开更多
With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th...With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.展开更多
The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irration...The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irrational regulations of reactive power compensation equipment have become the prominent problems of the regions where large-scale wind power integrated.In view of these problems,this paper proposed an optimal reactive power dispatch(ORPD)strategy of wind power plants cluster(WPPC)considering static voltage stability for lowcarbon power system.The control model of the ORPD strategy was built according to the wind power prediction,the present operation information and the historical operation information.By utilizing the automatic voltage control capability of wind power plants and central substations,the ORPD strategy can achieve differentiated management between the discrete devices and the dynamic devices of the WPPC.Simulation results of an actual WPPC in North China show that the ORPD strategy can improve the voltage control performance of the pilot nodes and coordinate the operation between discrete devices and the dynamic devices,thus maintaining the static voltage stability as well.展开更多
This paper presents the mean–variance(MV)model to solve power system reactive power dispatch problems with wind power integrated.The MV model considers the profit and risk simultaneously under the uncertain wind powe...This paper presents the mean–variance(MV)model to solve power system reactive power dispatch problems with wind power integrated.The MV model considers the profit and risk simultaneously under the uncertain wind power(speed)environment.To describe this uncertain environment,the Latin hypercube sampling with Cholesky decomposition simulation method is used to sample uncertain wind speeds.An improved optimization algorithm,group search optimizer with intraspecific competition and le´vy walk,is then used to optimize the MV model by introducing the risk tolerance parameter.The simulation is conducted based on the IEEE 30-bus power system,and the results demonstrate the effectiveness and validity of the proposed model and the optimization algorithm.展开更多
In view of the reactive power coordination difficulties caused by reactive power strong coupling,the provincial power grids in the interconnected system are formed by the multi-AC/DC transmission.Wind power channels a...In view of the reactive power coordination difficulties caused by reactive power strong coupling,the provincial power grids in the interconnected system are formed by the multi-AC/DC transmission.Wind power channels are under the conditions of large-scale long-distance transmission of wind power and other forms of renewable power generation.The AC-DC hybrid power flow equation of the interconnected system,including the AC-DC tie lines,is presented in this paper,along with the robust dynamic evolutionary optimization of the reactive power system in interconnected systems under fluctuating and uncertain wind power conditions.Therefore,the rapid collaborative optimization of reactive power flow and the exchange of reactive power between tie lines between provincial power grids are realized.The analysis was made by taking four interconnected large-scale provincial power grids of Eastern Mongolia,Jilin,Liaoning and Shandong as an example.The simulation results demonstrate the effectiveness and superiority of the proposed reactive power dynamic multi-objective optimization method for interconnected power grids.展开更多
The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To ...The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To address the influence of high penetration of RES integrated into active distribution networks,a distributionally robust chance constraint(DRCC)-based ORPD model considering discrete reactive power compensators is proposed in this paper.The proposed ORPD model combines a second-order cone programming(SOCP)-based model at the nominal operation mode and a linear power flow(LPF)model to reflect the system response under certainties.Then,a distributionally robust optimization(WDRO)method with Wasserstein distance is utilized to solve the proposed DRCC-based ORPD model.The WDRO method is data-driven due to the reason that the ambiguity set is constructed by the available historical data without any assumption on the specific probability distribution of the uncertainties.And the more data is available,the smaller the ambiguity would be.Numerical results on IEEE 30-bus and 123-bus systems and comparisons with the other three-benchmark approaches demonstrate the accuracy and effectiveness of the proposed model and method.展开更多
In this paper, a simple strategy based differential evolution was proposed for solving the problem of multi-objective environmental optimal power flow considering a hybrid model (Wind-Shunt-FACTS). The DE algorithm ...In this paper, a simple strategy based differential evolution was proposed for solving the problem of multi-objective environmental optimal power flow considering a hybrid model (Wind-Shunt-FACTS). The DE algorithm optimized simultaneously a combined vector control based active power of wind sources and reactive power of multi STATCOM exchanged with the electrical power system to minimize fuel cost and emissions. The proposed strategy was examined and applied to the standard IEEE 30-bus with smooth cost function to solve the problem of security environmental economic dispatch considering multi distributed hybrid model based wind and STATCOM controllers. In addition, the proposed approach was validated on a large practical electrical power system 40 generating units considering valve point effect. Simulation results demonstrate that choosing the installation of multi type of FACTS devices in coordination with many distributed wind sources is a vital research area.展开更多
To solve the optimal power flow(OPF)problem,reinforcement learning(RL)emerges as a promising new approach.However,the RL-OPF literature is strongly divided regarding the exact formulation of the OPF problem as an RL e...To solve the optimal power flow(OPF)problem,reinforcement learning(RL)emerges as a promising new approach.However,the RL-OPF literature is strongly divided regarding the exact formulation of the OPF problem as an RL environment.In this work,we collect and implement diverse environment design decisions from the literature regarding training data,observation space,episode definition,and reward function choice.In an experimental analysis,we show the significant impact of these environment design options on RL-OPF training performance.Further,we derive some first recommendations regarding the choice of these design decisions.The created environment framework is fully open-source and can serve as a benchmark for future research in the RL-OPF field.展开更多
As high amounts of new energy and electric vehicle(EV)charging stations are connected to the distribution network,the voltage deviations are likely to occur,which will further affect the power quality.It is challengin...As high amounts of new energy and electric vehicle(EV)charging stations are connected to the distribution network,the voltage deviations are likely to occur,which will further affect the power quality.It is challenging to manage high quality voltage control of a distribution network only relying on the traditional reactive power control mode.If the reactive power regulation potentials of new energy and EVs can be tapped,it will greatly reduce the reactive power optimization pressure on the network.Keeping this in mind,our reasearch first adds EVs to the traditional distribution network model with new forms of energy,and then a multi-objective optimization model,with achieving the lowest line loss,voltage deviation,and the highest static voltage stability margin as its objectives,is constructed.Meanwihile,the corresponding model parameters are set under different climate and equipment conditions.Ultimately,the optimization model under specific scenarios is obtained.Furthermore,considering the supply and demand relation-ship of the network,an improved technique for order preference by similarity to an ideal solution decision method is proposed,which aims to judge the adaptability of different algorithms to the optimized model,so as to select a most suitable algorithm for the problem.Finally,a comparison is made between the constructed model and a model without new energy.The results reveal that the constructed model can provide a high quality reactive power regula-tion strategy.展开更多
Photovoltaic(PV)power generation has highly penetrated in distribution networks,providing clean and sustainable energy.However,its uncertain and intermittent power outputs significantly impair network operation,leadin...Photovoltaic(PV)power generation has highly penetrated in distribution networks,providing clean and sustainable energy.However,its uncertain and intermittent power outputs significantly impair network operation,leading to unexpected power loss and voltage fluctuation.To address the uncertainties,this paper proposes a multi-timescale affinely adjustable robust reactive power dispatch(MTAAR-RPD)method to reduce the network power losses as well as alleviate voltage deviations and fluctuations.The MTAAR-RPD aims to coordinate on-load tap changers(OLTCs),capacitor banks(CBs),and PV inverters through a three-stage structure which covers multiple timescales of“hour-minute-second”.The first stage schedules CBs and OLTCs hourly while the second stage dispatches the base reactive power outputs of PV inverter every 15 min.The third stage affinely adjusts the inverter reactive power output based on an optimized Q-P droop controller in real time.The three stages are coordinately optimized by an affinely adjustable robust optimization method.A solution algorithm based on a cutting plane algorithm is developed to solve the optimization problem effectively.The proposed method is verified through theoretical analysis and numerical simulations.展开更多
基金Project supported by the National Natural Science Foundation ofChina (No. 60421002) and the Outstanding Young Research Inves-tigator Fund (No. 60225006), China
文摘This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the mutation operation. The proposed PNSIA algorithm is also extended to handle mixed variables, such as transformer taps and reactive power source in- stallation, using a simple scheme. PNSIA applied for optimal power system reactive power dispatch is evaluated on an IEEE 30-bus power system and a practical 118-bus power system in which the control of bus voltages, tap position of transformers and reactive power sources are involved to minimize the transmission loss of the power system. Simulation results showed that the proposed approach is superior to current methods for finding the optimal solution, in terms of both solution quality and algorithm robustness.
文摘With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.
基金This work was supported by the National Natural Science Foundation of China(No.51207145)the Science and Technology Project of State Grid Corporation of China(No.NY71-14-035).
文摘The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irrational regulations of reactive power compensation equipment have become the prominent problems of the regions where large-scale wind power integrated.In view of these problems,this paper proposed an optimal reactive power dispatch(ORPD)strategy of wind power plants cluster(WPPC)considering static voltage stability for lowcarbon power system.The control model of the ORPD strategy was built according to the wind power prediction,the present operation information and the historical operation information.By utilizing the automatic voltage control capability of wind power plants and central substations,the ORPD strategy can achieve differentiated management between the discrete devices and the dynamic devices of the WPPC.Simulation results of an actual WPPC in North China show that the ORPD strategy can improve the voltage control performance of the pilot nodes and coordinate the operation between discrete devices and the dynamic devices,thus maintaining the static voltage stability as well.
基金The work is funded by Guangdong Innovative Research Team Program(No.201001N0104744201)National Key Basic Research and Development Program(973 Program,No.2012CB215100),ChinaThe first author thanks for the financial support from China Scholarship Council Program(No.201306150070).
文摘This paper presents the mean–variance(MV)model to solve power system reactive power dispatch problems with wind power integrated.The MV model considers the profit and risk simultaneously under the uncertain wind power(speed)environment.To describe this uncertain environment,the Latin hypercube sampling with Cholesky decomposition simulation method is used to sample uncertain wind speeds.An improved optimization algorithm,group search optimizer with intraspecific competition and le´vy walk,is then used to optimize the MV model by introducing the risk tolerance parameter.The simulation is conducted based on the IEEE 30-bus power system,and the results demonstrate the effectiveness and validity of the proposed model and the optimization algorithm.
基金This work was supported by the National Key Research and Development Program of China under Grant No.2017YFB0902100.
文摘In view of the reactive power coordination difficulties caused by reactive power strong coupling,the provincial power grids in the interconnected system are formed by the multi-AC/DC transmission.Wind power channels are under the conditions of large-scale long-distance transmission of wind power and other forms of renewable power generation.The AC-DC hybrid power flow equation of the interconnected system,including the AC-DC tie lines,is presented in this paper,along with the robust dynamic evolutionary optimization of the reactive power system in interconnected systems under fluctuating and uncertain wind power conditions.Therefore,the rapid collaborative optimization of reactive power flow and the exchange of reactive power between tie lines between provincial power grids are realized.The analysis was made by taking four interconnected large-scale provincial power grids of Eastern Mongolia,Jilin,Liaoning and Shandong as an example.The simulation results demonstrate the effectiveness and superiority of the proposed reactive power dynamic multi-objective optimization method for interconnected power grids.
基金supported in part by National Key Research and Development Program of China(No.2018YFB0905000)in part by Key Research and Development Program of Shaanxi(No.2017ZDCXL-GY-02-03)。
文摘The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To address the influence of high penetration of RES integrated into active distribution networks,a distributionally robust chance constraint(DRCC)-based ORPD model considering discrete reactive power compensators is proposed in this paper.The proposed ORPD model combines a second-order cone programming(SOCP)-based model at the nominal operation mode and a linear power flow(LPF)model to reflect the system response under certainties.Then,a distributionally robust optimization(WDRO)method with Wasserstein distance is utilized to solve the proposed DRCC-based ORPD model.The WDRO method is data-driven due to the reason that the ambiguity set is constructed by the available historical data without any assumption on the specific probability distribution of the uncertainties.And the more data is available,the smaller the ambiguity would be.Numerical results on IEEE 30-bus and 123-bus systems and comparisons with the other three-benchmark approaches demonstrate the accuracy and effectiveness of the proposed model and method.
文摘In this paper, a simple strategy based differential evolution was proposed for solving the problem of multi-objective environmental optimal power flow considering a hybrid model (Wind-Shunt-FACTS). The DE algorithm optimized simultaneously a combined vector control based active power of wind sources and reactive power of multi STATCOM exchanged with the electrical power system to minimize fuel cost and emissions. The proposed strategy was examined and applied to the standard IEEE 30-bus with smooth cost function to solve the problem of security environmental economic dispatch considering multi distributed hybrid model based wind and STATCOM controllers. In addition, the proposed approach was validated on a large practical electrical power system 40 generating units considering valve point effect. Simulation results demonstrate that choosing the installation of multi type of FACTS devices in coordination with many distributed wind sources is a vital research area.
文摘To solve the optimal power flow(OPF)problem,reinforcement learning(RL)emerges as a promising new approach.However,the RL-OPF literature is strongly divided regarding the exact formulation of the OPF problem as an RL environment.In this work,we collect and implement diverse environment design decisions from the literature regarding training data,observation space,episode definition,and reward function choice.In an experimental analysis,we show the significant impact of these environment design options on RL-OPF training performance.Further,we derive some first recommendations regarding the choice of these design decisions.The created environment framework is fully open-source and can serve as a benchmark for future research in the RL-OPF field.
基金supported by National Key R&D Program of China (2021ZD0111502)National Natural Science Foundation of China (51907112,U2066212)+1 种基金Natural Science Foundation of Guangdong Province of China (2019A1515011671,2021A1515011709)Scientific Research Staring Foundation of Shantou University (NTF19028,NTF20009).
文摘As high amounts of new energy and electric vehicle(EV)charging stations are connected to the distribution network,the voltage deviations are likely to occur,which will further affect the power quality.It is challenging to manage high quality voltage control of a distribution network only relying on the traditional reactive power control mode.If the reactive power regulation potentials of new energy and EVs can be tapped,it will greatly reduce the reactive power optimization pressure on the network.Keeping this in mind,our reasearch first adds EVs to the traditional distribution network model with new forms of energy,and then a multi-objective optimization model,with achieving the lowest line loss,voltage deviation,and the highest static voltage stability margin as its objectives,is constructed.Meanwihile,the corresponding model parameters are set under different climate and equipment conditions.Ultimately,the optimization model under specific scenarios is obtained.Furthermore,considering the supply and demand relation-ship of the network,an improved technique for order preference by similarity to an ideal solution decision method is proposed,which aims to judge the adaptability of different algorithms to the optimized model,so as to select a most suitable algorithm for the problem.Finally,a comparison is made between the constructed model and a model without new energy.The results reveal that the constructed model can provide a high quality reactive power regula-tion strategy.
基金supported in part by the Scientific Research Foundation of Nanjing University of Science and Technology(No.AE89991/255)in part by Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment Project,Southeast University+1 种基金in part by the National Natural Science Foundation of China(No.51677025)in part by the Science and Technology Project of State Grid Corporation(No.SGMD0000YXJS1900502)。
文摘Photovoltaic(PV)power generation has highly penetrated in distribution networks,providing clean and sustainable energy.However,its uncertain and intermittent power outputs significantly impair network operation,leading to unexpected power loss and voltage fluctuation.To address the uncertainties,this paper proposes a multi-timescale affinely adjustable robust reactive power dispatch(MTAAR-RPD)method to reduce the network power losses as well as alleviate voltage deviations and fluctuations.The MTAAR-RPD aims to coordinate on-load tap changers(OLTCs),capacitor banks(CBs),and PV inverters through a three-stage structure which covers multiple timescales of“hour-minute-second”.The first stage schedules CBs and OLTCs hourly while the second stage dispatches the base reactive power outputs of PV inverter every 15 min.The third stage affinely adjusts the inverter reactive power output based on an optimized Q-P droop controller in real time.The three stages are coordinately optimized by an affinely adjustable robust optimization method.A solution algorithm based on a cutting plane algorithm is developed to solve the optimization problem effectively.The proposed method is verified through theoretical analysis and numerical simulations.