期刊文献+
共找到1,383篇文章
< 1 2 70 >
每页显示 20 50 100
Multi-objective integrated optimization based on evolutionary strategy with a dynamic weighting schedule 被引量:2
1
作者 傅武军 朱昌明 叶庆泰 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期204-207,共4页
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf... The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method. 展开更多
关键词 integrated design multi-objective optimization evolutionary strategy dynamic weighting schedule suspension system
下载PDF
Aircraft Landing Gear Control with Multi-Objective Optimization Using Generalized Cell Mapping 被引量:3
2
作者 孙建桥 贾腾 +3 位作者 熊夫睿 秦志昌 吴卫国 丁千 《Transactions of Tianjin University》 EI CAS 2015年第2期140-146,共7页
This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sli... This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain. 展开更多
关键词 LANDING GEAR SLIDING mode control model uncertainty multi-objective optimization GENERALIZED cellmapping
下载PDF
ESO-based decoupling control with multi-objective optimization for boiler-turbine unit 被引量:3
3
作者 Zhu Jianzhong Wu Xiao Shen Jiong 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期64-71,共8页
A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementati... A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI) decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production. 展开更多
关键词 boiler-turbine unit extended state observer(ESO) decoupling control multi-objective optimization
下载PDF
Simulation-based multi-objective optimization for roll shifting strategy in hot strip mill 被引量:2
4
作者 李维刚 《Journal of Central South University》 SCIE EI CAS 2013年第5期1226-1234,共9页
A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulat... A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km. 展开更多
关键词 hot rolling roll shifting strategy roll wear multi-objective optimization Pareto-optimal front
下载PDF
Multi-objective optimization for voltage and frequency control of smart grids based on controllable loads 被引量:2
5
作者 Yaxin Wang Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 CAS CSCD 2021年第2期136-144,共9页
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi... The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB. 展开更多
关键词 multi-objective optimization Voltage control Frequency control Power flow controllable loads Game theory
下载PDF
Multi-objective optimization based on Genetic Algorithm for PID controller tuning 被引量:1
6
作者 王国良 阎威武 邵惠鹤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第1期71-74,共4页
To get the satisfying performance of a PID controller, this paper presents a novel Pareto-based multi-objective genetic algorithm (MOGA), which can be used to find the appropriate setting of the PID controller by anal... To get the satisfying performance of a PID controller, this paper presents a novel Pareto-based multi-objective genetic algorithm (MOGA), which can be used to find the appropriate setting of the PID controller by analyzing the pareto optimal surfaces. Rated settings of the controller by two criteria, the error between output and reference signals and control moves, are listed on the pareto surface. Appropriate setting can be chosen under a balance between two criteria for different control purposes. A controller tuning problem for a plant with high order and time delay is chosen as an example. Simulation results show that the method of MOGA is more efficient compared with traditional tuning methods. 展开更多
关键词 multi-objective optimization genetic algorithms PID controller
下载PDF
Multi-Objective Optimization for Active Disturbance Rejection Control for the ALSTOM Benchmark Problem 被引量:1
7
作者 Chun’e Huang Zhongli Liu 《International Journal of Clean Coal and Energy》 2015年第3期61-68,共8页
Based on a thing that it is difficult to choose the parameters of active disturbance rejection control for the non-linear ALSTOM gasifier, multi-objective optimization algorithm is applied in the choose of parameters.... Based on a thing that it is difficult to choose the parameters of active disturbance rejection control for the non-linear ALSTOM gasifier, multi-objective optimization algorithm is applied in the choose of parameters. Simulation results show that performance tests in load change and coal quality change achieve better dynamic responses and larger scales of rejecting coal quality disturbances. The study provides an alternative to choose parameters for other control schemes of the ALSTOM gasifier. 展开更多
关键词 GASIFICATION multi-objective optimization Non-Dominated SORTING Algorithm II (NSGA-II) Active Disturbance REJECTION control (ADRC)
下载PDF
Multi-objective optimization based optimal setting control for industrial double-stream alumina digestion process
8
作者 WANG Xiao-li LU Mei-yu +1 位作者 WEI Si-mi XIE Yong-fang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期173-185,共13页
The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previ... The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption. 展开更多
关键词 double-stream digestion process optimal setting control multi-objective optimization state transition algorithm rule based decision making
下载PDF
Operation Optimal Control of Urban Rail Train Based on Multi-Objective Particle Swarm Optimization
9
作者 Liang Jin Qinghui Meng Shuang Liang 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期387-395,共9页
The energy consumption of train operation occupies a large proportion of the total consumption of railway transportation.In order to improve the oper-ating energy utilization rate of trains,a multi-objective particle ... The energy consumption of train operation occupies a large proportion of the total consumption of railway transportation.In order to improve the oper-ating energy utilization rate of trains,a multi-objective particle swarm optimiza-tion(MPSO)algorithm with energy consumption,punctuality and parking accuracy as the objective and safety as the constraint is built.To accelerate its the convergence process,the train operation progression is divided into several modes according to the train speed-distance curve.A human-computer interactive particle swarm optimization algorithm is proposed,which presents the optimized results after a certain number of iterations to the decision maker,and the satisfac-tory outcomes can be obtained after a limited number of adjustments.The multi-objective particle swarm optimization(MPSO)algorithm is used to optimize the train operation process.An algorithm based on the important relationship between the objective and the preference information of the given reference points is sug-gested to overcome the shortcomings of the existing algorithms.These methods significantly increase the computational complexity and convergence of the algo-rithm.An adaptive fuzzy logic system that can simultaneously utilize experience information andfield data information is proposed to adjust the consequences of off-line optimization in real time,thereby eliminating the influence of uncertainty on train operation.After optimization and adjustment,the whole running time has been increased by 0.5 s,the energy consumption has been reduced by 12%,the parking accuracy has been increased by 8%,and the comprehensive performance has been enhanced. 展开更多
关键词 Particle swarm optimization multi-objective urban rail train optimal control
下载PDF
Multi-objective optimization for roll shifting strategy in cross rolling campaigns of hot strip mill
10
作者 LI Weigang 《Baosteel Technical Research》 CAS 2012年第4期21-27,共7页
A multi-objective optimization approach for the roll shifting strategy in cross rolling campaigns of hot strip mills is presented. The effect of different roll shifting strategies on roll wear contour is studied by nu... A multi-objective optimization approach for the roll shifting strategy in cross rolling campaigns of hot strip mills is presented. The effect of different roll shifting strategies on roll wear contour is studied by numerical simulation, and two evaluation indexes ,namely body smoothness and edge smoothness, are proposed. The average body smoothness and average rolling edge smoothness of all strips in a rolling campaign are taken as the objective functions, the shifting positions of all wide strips as the decision variables, and the multi-objective method of NSGA-II as the optimizer. Thus a multi-objective optimization model for the roll shifting strategy is built. The simulation results show that work roll shifting can make wear contour smooth,and a dish-shaped wear contour without severe local wear can be achieved by the roll shifting strategy with varying stroke. Optimization experimentation shows that by means of NSGA-II,a good Pareto-optimal front can be obtained, which suggests a series of alternative solutions for roll shifting strategy optimization. The experimentation also shows that there is a conflict between the two objectives. Finally, application cases confirm the feasibility of the multi-objective approach, which can improve the strip profile ,reduce edge waves and extend the rolling miles of a rolling campaign. 展开更多
关键词 cross rolling roll shifting strategy roll wear multi-objective optimization Pareto-optimal solution
下载PDF
Multi-objective Function Optimization for Environmental Control of a Greenhouse Based on a RBF and NSGA-Ⅱ
11
作者 Zhou Xiu-li Liu Ming-wei +3 位作者 Wang Ling Xu Xiao-chuan Chen Gang Wang De-fu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第1期75-89,共15页
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve... To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively. 展开更多
关键词 greenhouse temperature multi-objective optimization radial-basis function(RBF) non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ)
下载PDF
Series-parallel Hybrid Vehicle Control Strategy Design and Optimization Using Real-valued Genetic Algorithm 被引量:14
12
作者 XIONG Weiwei YIN Chengliang ZHANG Yong ZHANG Jianlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期862-868,共7页
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been... Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles. 展开更多
关键词 series-parallel hybrid electric vehicle control strategy DESIGN optimization real-valued genetic algorithm
下载PDF
Modelling and Multi-Objective Optimal Control of Batch Processes Using Recurrent Neuro-fuzzy Networks 被引量:2
13
作者 Jie Zhang 《International Journal of Automation and computing》 EI 2006年第1期1-7,共7页
In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range pre... In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor. 展开更多
关键词 optimal control batch processes neural networks multi-objective optimisation.
下载PDF
Energy Optimization of the Fin/Rudder Roll Stabilization System Based on the Multi-objective Genetic Algorithm (MOGA) 被引量:3
14
作者 Lijun Yu Shaoying Liu Fanming Liu Hui Wang 《Journal of Marine Science and Application》 CSCD 2015年第2期202-207,共6页
Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder r... Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states. 展开更多
关键词 ship motion energy optimization ship roll reduction performance index self-tuning PID multi-objective geneticalgorithm (MOGA) roll stabilization fin/rudder roll stabilization yaw control precision
下载PDF
SEGMENTIZED OPTIMIZATION STRATEGY FOR PREDICTIVE CONTROL 被引量:1
15
作者 杨健 邵世煌 +1 位作者 席裕庚 张钟俊 《Journal of China Textile University(English Edition)》 EI CAS 1995年第1期1-6,共6页
To improve the computational efficieney of optimization based control methods, a new kind of Segmentized Optimization Strategy is presented,aiming at achieving more economical computation as well as comparatively sati... To improve the computational efficieney of optimization based control methods, a new kind of Segmentized Optimization Strategy is presented,aiming at achieving more economical computation as well as comparatively satisfactory performance. Its profitability is examined. And the effectiveaess is shown in the simulation. 展开更多
关键词 optimization PREDICTIVE control PROGRAMMING segmentization strategy.
下载PDF
A multi-objective optimal PID control for a nonlinear system with time delay 被引量:1
16
作者 Furui Xiong Zhichang Qin +6 位作者 Carlos Hernndez Yousef Sardahi Yousef Narajani Wei Liang Yang Xue Oliver Schtze Jianqiao Sun 《Theoretical & Applied Mechanics Letters》 CAS 2013年第6期35-40,共6页
It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specificat... It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306] 展开更多
关键词 delayed control system multi-objective optimal design cell mapping method hybridalgorithm Pareto optimal
下载PDF
Attitude control allocation strategy of high altitude airship based on synthetic performance optimization 被引量:1
17
作者 遆晓光 韩放 姚郁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第6期746-750,共5页
This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic ... This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic performance and energy consumption of airship. Firstly, according to the system overall configuration, the dynamic model of HAA was established and the HAA linearized model of longitudinal plane motion was obtained. Secondly, using the classic PID control theory, the HAA attitude control system was designed. Thirdly, through analyzing the dynamic performance of airship with fin or vectored thruster control, the synthetic performance index function with different weighting functions was determined. By means of optimizing the obtained performance index function, the attitude control of high altitude airship with good dynamic performance and low energy consumption was achieved. Finally, attitude control allocation strategy was designed for the airship station keeping at an altitude of 22 km. The simulation experiment proved the validity of the proposed algorithm. 展开更多
关键词 high altitude airship attitude control synthetic performance optimization control strategy
下载PDF
The multi-objective optimal control with X-Q adaptive controller
18
作者 Qing HU Yiju ZHAN 《控制理论与应用(英文版)》 EI 2009年第2期202-206,共5页
This paper proposes a new type of nonlinear controllers and a large phase angle allowance design method based on the multi-objective optimal control system. With the proposed method, the performance of the system beco... This paper proposes a new type of nonlinear controllers and a large phase angle allowance design method based on the multi-objective optimal control system. With the proposed method, the performance of the system becomes better than that of the original system. Then, an example of the radar servo system is designed with a large phase angle allowance multi-objective optimal design method. Finally, the performance based on computer simulation demonstrates that the multi-objective optimal system is superior to linear optimal systems. 展开更多
关键词 Adaptive controller multi-objective optimal design Nonlinear controller Servo system
下载PDF
Multi-objective optimization design for leg mechanism of hydraulic-actuated quadruped robot
19
作者 马明 孙博 +1 位作者 王建中 施家栋 《Journal of Beijing Institute of Technology》 EI CAS 2013年第1期12-19,共8页
In order to improve the robot' s abilities of bearing heavy burdens and transporting in complex terrains, the multi-objective optimization design for leg mechanism of the quadruped robot with hydraulic actuated is st... In order to improve the robot' s abilities of bearing heavy burdens and transporting in complex terrains, the multi-objective optimization design for leg mechanism of the quadruped robot with hydraulic actuated is studied in this paper. The kinematics and dynamics of the robot are ana- lyzed and the two-dimensional linear inverted pendulum model is adopted in planning the trajectories of joints. Then the mathematical model of valve-controlled asymmetric cylinder and control model of single leg are proposed respectively. In the end, NSGA-Ⅱ algorithm is used to achieve the multi^ob- jective optimization design of parameters concerning single leg mechanism and PD torque control. The results prove that the optimized leg mechanism can significantly reduce the required maximum power of hydraulic system, thus decrease its own weight and lead to the obtaining of good dynamic performance. 展开更多
关键词 quadruped robot multi-objective optimization NSGA-Ⅱ algorithm torque control
下载PDF
Control strategy optimization using dynamic programming method for synergic electric system on hybrid electric vehicle
20
作者 Yuan-Bin Yu Qing-Nian Wang +2 位作者 Hai-Tao Min Peng-Yu Wang Chun-Guang Hao 《Natural Science》 2009年第3期222-228,共7页
Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rul... Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rules are derived from analyzing the optimal trajectories, and it has the highest contribution to Hybrid Electric Vehicle (HEV). The methods of how to get the best performance is also educed. Using the new Rule-based power management strat-egy adopted from the optimal results, it is easy to demonstrate the effectiveness of the new strategy in further improvement of the fuel economy by the synergic hybrid system. 展开更多
关键词 DYNAMIC PROGRAMMING control strategy optimization Synergic ELECTRIC System HEV
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部