期刊文献+
共找到6,658篇文章
< 1 2 250 >
每页显示 20 50 100
In silico optimization of actuation performance in dielectric elastomercomposites via integrated finite element modeling and deep learning
1
作者 Jiaxuan Ma Sheng Sun 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期48-56,共9页
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ... Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites. 展开更多
关键词 Dielectric elastomer composites multi-objective optimization finite element modeling Convolutional neural network
下载PDF
A Deep Learning Approach to Shape Optimization Problems for Flexoelectric Materials Using the Isogeometric Finite Element Method
2
作者 Yu Cheng Yajun Huang +3 位作者 Shuai Li Zhongbin Zhou Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1935-1960,共26页
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization... A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization. 展开更多
关键词 Shape optimization deep learning flexoelectric structure finite element method isogeometric
下载PDF
Gradient Recovery Based Two-Grid Finite Element Method for Parabolic Integro-Differential Optimal Control Problems
3
作者 Miao Yang 《Journal of Applied Mathematics and Physics》 2024年第8期2849-2865,共17页
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ... In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results. 展开更多
关键词 optimal Control Problem Gradient Recovery Two-Grid finite element Method
下载PDF
A Cell-Based Linear Smoothed Finite Element Method for Polygonal Topology Optimization
4
作者 Changkye Lee Sundararajan Natarajan +1 位作者 Seong-Hoon Kee Jurng-Jae Yee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1615-1634,共20页
The aim of this work is to employ a modified cell-based smoothed finite element method(S-FEM)for topology optimization with the domain discretized with arbitrary polygons.In the present work,the linear polynomial basi... The aim of this work is to employ a modified cell-based smoothed finite element method(S-FEM)for topology optimization with the domain discretized with arbitrary polygons.In the present work,the linear polynomial basis function is used as the weight function instead of the constant weight function used in the standard S-FEM.This improves the accuracy and yields an optimal convergence rate.The gradients are smoothed over each smoothing domain,then used to compute the stiffness matrix.Within the proposed scheme,an optimum topology procedure is conducted over the smoothing domains.Structural materials are distributed over each smoothing domain and the filtering scheme relies on the smoothing domain.Numerical tests are carried out to pursue the performance of the proposed optimization by comparing convergence,efficiency and accuracy. 展开更多
关键词 Smoothed finite element method linear smoothing function topology optimization solid isotropic material with penalization(SIMP) polygonal finite element cell
下载PDF
OPTIMIZATION OF AUTOBODY PANEL STAMPING PROCESS BASED ON DYNAMIC EXPLICIT FINITE ELEMENT METHOD 被引量:6
5
作者 X. G. Bao D. N. He +2 位作者 D. Lu C. X. Li J. L. Cheng and J. Y. Jiang( 1) National Mold and Dies CAD Engineering Research Center, Shanghai 200030, China 2) Shanghai Volkswagen Automotive Company Ltd.(SVW), Shanghai 201805, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期387-393,共7页
Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this... Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained. 展开更多
关键词 dynamic explicit finite element method autobody panel optimization stamping process
下载PDF
A Study on the Multi-Objective Optimization Method of Brackets in Ship Structures
6
作者 LIU Fan HU Yu-meng +2 位作者 FENG Guo-qing ZHAO Wei-dong ZHANG Ming 《China Ocean Engineering》 SCIE EI CSCD 2022年第2期208-222,共15页
The shape and size optimization of brackets in hull structures was conducted to achieve the simultaneous reduction of mass and high stress,where the parametric finite element model was built based on Patran Command La... The shape and size optimization of brackets in hull structures was conducted to achieve the simultaneous reduction of mass and high stress,where the parametric finite element model was built based on Patran Command Language codes.The optimization procedure was executed on Isight platform,on which the linear dimensionless method was introduced to establish the weighted multi-objective function.The extreme processing method was applied and proved effective to normalize the objectives.The bracket was optimized under the typical single loads and design waves,accompanied by the different proportions of weights in the objective function,in which the safety factor function was further established,including yielding,buckling,and fatigue strength,and the weight minimization and safety maximization of the bracket were obtained.The findings of this study illustrate that the dimensionless objectives share equal contributions to the multi-objective function,which enhances the role of weights in the optimization. 展开更多
关键词 BRACKETS parametric finite element model multi-objective optimization extreme processing method safety factor function weighted multi-objective function
下载PDF
Robust Multi-Objective Optimization of Chromatographic Rare Earth Element Separation 被引量:1
7
作者 Hans-Kristian Knutson Anders Holmqvist +1 位作者 Niklas Andersson Bernt Nilsson 《Advances in Chemical Engineering and Science》 2017年第4期477-493,共17页
Rare earth elements are strategic commodities in many countries, and an important resource for the growing modern technology industry. As such, there is an increasing interest for development of rare earth element pro... Rare earth elements are strategic commodities in many countries, and an important resource for the growing modern technology industry. As such, there is an increasing interest for development of rare earth element processing, and this work is a part of further development of chromatography as a rare earth element separation process method. Process optimization is pivotal for process development, and it is common that several competing objectives must be regarded. Chromatographic separation processes often consider competing objectives, such as productivity, yield, pool concentration and modifier consumption, which leads to Pareto optimal solutions. Adding robustness to a process is of great importance to account for process disturbances and uncertainties but generally comes with reduced performance of the other process objectives as a trade off. In this study, a model-based robust multi-objective optimization was carried out for batch-wise chromatographic separation of the rare earth elements samarium, europium and gadolinium, which was considered highly un-robust due to the neighbouring peaks proximity to the product pooling horizon. The results from the robust optimization were used to chart the required operation point changes for keeping the amount of failed batches at an acceptable level when a certain level of process disturbance was introduced. The loss of process performance due to the gained robustness was found to be in the range of 10% - 20% reduced productivity when comparing the robust and un-robust Pareto solutions at Pareto points with identical yield. The methodology presented shows how to increase robustness to a highly un-robust system while still keeping multiple objectives at their optima. 展开更多
关键词 RARE Earth elements CHROMATOGRAPHY multi-objective optimization ROBUST optimization
下载PDF
Multi-Objective Optimization of High Torque Density Segmented PM Consequent Pole Flux Switching Machine with Flux Bridge 被引量:4
8
作者 Wasiq Ullah Faisal Khan Muhammad Umair 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第1期30-40,共11页
Due to double salient structure,Flux Switching Machines(FSMs)are preferred for brushless AC high speed applications.Permanent Magnet(PM)FSMs(PM-FSMs)are suited applicants where high torque density(Tden)and power densi... Due to double salient structure,Flux Switching Machines(FSMs)are preferred for brushless AC high speed applications.Permanent Magnet(PM)FSMs(PM-FSMs)are suited applicants where high torque density(Tden)and power density(Pden)are the utmost requisite.However conventional PM-FSMs utilizes excessive rare earth PM volume VPM,higher cogging torque Tcog,high torque ripples(Trip)and comparatively lower(Tden)and Pden due to flux leakage.To overcome the aforesaid demerits,a new high(Tden)Segmented PM Consequent Pole(CP)FSM(SPMCPFSM)with flux bridge and barrier is proposed which successfully reduces VPM by 46.52%and PM cost by 46.48%.Moreover,Multi-Objective Optimization(MOO)examines electromagnetic performance due to variation in geometric parameters for global optimum parameters with key metric such as flux linkage(Φpp),flux harmonics(ΦTHD)average torque(Tavg),Tcog,Trip,Tden,average power(Pavg)and Pden.Analysis reveals that MOO improveΦpp by 22.68%,boost Tavg by 11.41%,enhanced Pavg by 4.55%and increased Tden and Pden by 11.41%.Detailed electromagnetic performance comparison with existing state of the art shows that proposed SPMCPFSM offer Tavg maximum up to 88.8%,truncate Trip up to 24.8%,suppress Tcog up to 22.74%,and results 2.45 times Tden and Pden. 展开更多
关键词 Consequent Pole multi-objective optimization finite element analysis optimization segmented PM AC Machine.
下载PDF
A Priori and A Posteriori Error Estimates of Streamline Diffusion Finite Element Method for Optimal Control Problem Governed by Convection Dominated Diffusion Equation 被引量:5
9
作者 Ningning Yan Zhaojie Zhou 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第3期297-320,共24页
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc... In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results. 展开更多
关键词 Constrained optimal control problem convection dominated diffusion equation stream-line diffusion finite element method a priori error estimate a posteriori error estimate.
下载PDF
SHAPE OPTIMIZATION DESIGN OF CRUSH TOOTH USING FINITE ELEMENT METHOD
10
作者 Gong Kaijun Yang Qingfu Zhang Junxia (Taiyuan University of Technology) Zhu Wennong (Jilin University of Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1994年第2期130-134,共17页
The load condition of the mineral sizer is discussed. Acoording to three typical load cases presented, FEM and optimization models are established. Computed the model problems by use of ANSYS software and sequential u... The load condition of the mineral sizer is discussed. Acoording to three typical load cases presented, FEM and optimization models are established. Computed the model problems by use of ANSYS software and sequential unconstrained minimization technique, the stress distribution on c rush tooth and it's optimal shape are aquired. After analyzing the results, the relation between stress distribution and structural parameters is presented. 展开更多
关键词 CRUSH optimal design finite element method
全文增补中
ADAPTIVE FINITE ELEMENT METHOD BASED ON OPTIMAL ERROR ESTIMATES FOR LINEAR ELLIPTIC PROBLEMS ON CONCAVE CORNER DOMAINS 被引量:1
11
作者 汤雁 《Transactions of Tianjin University》 EI CAS 2001年第1期64-67,共4页
An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method an... An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method and using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions.The proposed procedure is analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that the method can generate the correct type of refinements and lead to the desired control under consideration. 展开更多
关键词 adaptive finite element method priori error estimate optimal mesh design
全文增补中
Multi-objective optimization of stamping forming process of head using Pareto-based genetic algorithm 被引量:10
12
作者 周杰 卓芳 +1 位作者 黄磊 罗艳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3287-3295,共9页
To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based gen... To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure. 展开更多
关键词 stamping forming HEADS finite element analysis central composite experimental design response surface methodology multi-objective genetic algorithm
下载PDF
Optimal design of butterfly-shaped linear ultrasonic motor using finite element method and response surface methodology 被引量:9
13
作者 时运来 陈超 赵淳生 《Journal of Central South University》 SCIE EI CAS 2013年第2期393-404,共12页
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ... A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8. 展开更多
关键词 linear ultrasonic motor PIEZOELECTRIC optimal design response surface methodology finite element method
下载PDF
Self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order 被引量:4
14
作者 袁驷 邢沁妍 +1 位作者 王旭 叶康生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第5期591-602,共12页
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele... Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach. 展开更多
关键词 finite element method (FEM) self-adaptive solution super-convergence optimal convergence order element energy projection condensed shape functions
下载PDF
Convergence and Superconvergence of Fully Discrete Finite Element for Time Fractional Optimal Control Problems 被引量:1
15
作者 Yuelong Tang 《American Journal of Computational Mathematics》 2021年第1期53-63,共11页
In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and &l... In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results. 展开更多
关键词 Time Fractional optimal Control Problems finite element Convergence and Superconvergence
下载PDF
Numerical-Experimental Updating Identification of Elastic Behavior of a Composite Plate Using New Multi-Objective Optimization Procedure
16
作者 Samir Ghanmi Sofiane Bouajila Mohamed Guedri 《Journal of Surface Engineered Materials and Advanced Technology》 2013年第1期13-20,共8页
This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engin... This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engineering constants that minimize the relative deviations between the first eight experimental and three-dimensional finite element frequencies of the vibrating free plate. For this purpose, a multi-objective optimization procedure is applied;it exploits a Particle Swarm Optimizer algorithm (PSO) that is coupled to a metamodeling by the new response surfaces method procedure (NRSMP);the latter is based on numerical design experiments. The conducted sensitivity analyses indicate that the four engineering constants of the two-dimensional elasticity are the most influent. 展开更多
关键词 Composites finite element EXPERIMENTAL DESIGNS multi-objective optimization Numerical-Experimental Updating IDENTIFICATION Response Surfaces
下载PDF
Multi-objective Optimization Design of Magnesium Alloy Wheel Based on Topology Optimization
17
作者 JIANG Xin LIU Hai +4 位作者 Yoshio Fukushima Minoru Otake Naoki Kawada ZHANG Zhenglai JU Dongying 《材料科学与工程(中英文B版)》 2019年第1期13-24,共12页
Lightweight of automatic vehicle is a significant application trend,using topology optimization and magnesium alloy materials is a valuable way.This article designs a new model of automobile wheel and optimizes the st... Lightweight of automatic vehicle is a significant application trend,using topology optimization and magnesium alloy materials is a valuable way.This article designs a new model of automobile wheel and optimizes the structure for lightweight.Through measuring and analyzing designed model under static force,clear and useful topology optimization results were obtained.Comparing wheel performance before and after optimization,the optimized wheel structure compliance with conditions such as strength can be obtained.Considering three different materials namely magnesium alloy,aluminum alloy and steel,the stress and strain performances of each materials can be obtained by finite element analysis.The reasonable and superior magnesium alloy wheels for lightweight design were obtained.This research predicts the reliability of the optimization design,some valuable references are provided for the development of magnesium alloy wheel. 展开更多
关键词 MAGNESIUM alloy WHEEL structural design TOPOLOGY optimization LIGHTWEIGHT finite element
下载PDF
Error estimates of H^1-Galerkin mixed finite element method for Schrdinger equation 被引量:28
18
作者 LIU Yang LI Hong WANG Jin-feng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第1期83-89,共7页
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t... An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition. 展开更多
关键词 H1-Galerkin mixed finite element method Schrdinger equation LBB condition optimal error estimates
下载PDF
A LOCKING-FREE ANISOTROPIC NONCONFORMING FINITE ELEMENT FOR PLANAR LINEAR ELASTICITY PROBLEM 被引量:15
19
作者 石东洋 毛士鹏 陈绍春 《Acta Mathematica Scientia》 SCIE CSCD 2007年第1期193-202,共10页
The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error est... The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error estimates are obtained by using some novel approaches and techniques. The method proposed in this article is robust in the sense that the convergence estimates in the energy and L^2-norms are independent-of the Lame parameter λ. 展开更多
关键词 LOCKING-FREE planar linear elasticity anisotropic nonconforming finite element optimal error estimates
下载PDF
Error Estimates of a New Lowest Order Mixed Finite Element Approximation for Semilinear Optimal Control Problems
20
作者 Zuliang Lu Dayong Liu 《数学计算(中英文版)》 2013年第3期62-67,共6页
关键词 混合有限元方法 最优控制问题 先验误差估计 有限元逼近 半线性 低阶 有限元空间 近似逼近
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部