This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed a...Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.展开更多
In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide...In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide. This paper proposes a general working pattern for a GEO optical satellite, as well as a target observation mission planning model. After analyzing the requirements of users and satellite control agencies, two objectives are simultaneously considered: maximization of total profit and minimization of satellite attitude maneuver angle. An NSGA-II based multi-objective optimization algorithm is proposed, which contains some heuristic principles in the initialization phase and mutation operator, and is embedded with a traveling salesman problem (TSP) optimization. The validity and performance of the proposed method are verified by extensive numerical simulations that include several types of point target distributions.展开更多
The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is propo...The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is proposed in this paper.Several types of relationships to be coordinated and complemented are analyzed and formulated using quantitative indices.According to the graph theory,the HVDC partition is transformed into a graph-cut problem and solved via the spectral clustering algorithm.Finally,the proposed method is validated for a practical multi-HVDC grid,confirming its feasibility and effectiveness.展开更多
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob...Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.展开更多
Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependenc...Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependence among activity durations when more than one activity is possibly affected by the same indeterminate factors. On this basis of analysis of indeterminate effect factors of durations, the effect factors-based stochastic network planning (EFBSNP) model is proposed, which emphasizes on the effects of not only logistic and organizational relationships, but also the dependent relationships, due to indeterminate factors among activity durations on the project period. By virtue of indeterminate factor analysis the model extracts and describes the quantitatively indeterminate effect factors, and then takes into account the indeterminate factors effect schedule by using the Monte Carlo simulation technique. The method is flexible enough to deal with effect factors and is coincident with practice. A software has been developed to simplify the model-based calculation, in VisualStudio.NET language. Finally, a case study is included to demonstrate the applicability of the proposed model and comparison is made with some advantages over the existing models.展开更多
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki...Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.展开更多
Agriculture is a key facilitator of economic prosperity and nourishes the huge global population.To achieve sustainable agriculture,several factors should be considered,such as increasing nutrient and water efficiency...Agriculture is a key facilitator of economic prosperity and nourishes the huge global population.To achieve sustainable agriculture,several factors should be considered,such as increasing nutrient and water efficiency and/or improving soil health and quality.Using fertilizer is one of the fastest and easiest ways to improve the quality of nutrients inland and increase the effectiveness of crop yields.Fertilizer supplies most of the necessary nutrients for plants,and it is estimated that at least 30%-50%of crop yields is attributable to commercial fertilizer nutrient inputs.Fertilizer is always a major concern in achieving sustainable and efficient agriculture.Applying reasonable and customized fertilizerswill require a significant increase in the number of formulae,involving increasing costs and the accurate forecasting of the right time to apply the suitable formulae.An alternative solution is given by two-stage production planning under stochastic demand,which divides a planning schedule into two stages.The primary stage has non-existing demand information,the inputs of which are the proportion of raw materials needed for producing fertilizer products,the cost for purchasing materials,and the production cost.The total quantity of purchased material and produced products to be used in the blending process must be defined to meet as small as possible a paid cost.At the second stage,demand appears under multiple scenarios and their respective possibilities.This stage will provide a solution for each occurring scenario to achieve the best profit.The two-stage approach is presented in this paper,the mathematical model of which is based on linear integer programming.Considering the diversity of fertilizer types,themathematicalmodel can advise manufacturers about which products will generate as much as profit as possible.Specifically,two objectives are taken into account.First,the paper’s thesis focuses on minimizing overall system costs,e.g.,including inventory cost,purchasing cost,unit cost,and ordering cost at Stage 1.Second,the thesis pays attention tomaximizing total profit based on information from customer demand,as well as being informed regarding concerns about system cost at Stage 2.展开更多
To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planni...To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planning is proposed based on the multi-objective genetic algorithm (MOGA) for multiple objectives traveling salesman problem (MOTSP). Then, the path between two route nodes is generated based on the heuristic path planning method A *. A simplified timeliness function for route nodes is proposed to represent the timeliness of each node. Based on the proposed timeliness function, experiments are conducted using the proposed two-stage planning method. The experimental results show that the proposed MOGA with improved fitness function can perform the searching function well when the timeliness of the searching task needs to be taken into consideration.展开更多
Stochastic demand is an important factor that heavily affects production planning.It influences activities such as purchasing,manufacturing,and selling,and quick adaption is required.In production planning,for reasons...Stochastic demand is an important factor that heavily affects production planning.It influences activities such as purchasing,manufacturing,and selling,and quick adaption is required.In production planning,for reasons such as reducing costs and obtaining supplier discounts,many decisions must be made in the initial stage when demand has not been realized.The effects of non-optimal decisions will propagate to later stages,which can lead to losses due to overstocks or out-of-stocks.To find the optimal solutions for the initial and later stage regarding demand realization,this study proposes a stochastic two-stage linear program-ming model for a multi-supplier,multi-material,and multi-product purchasing and production planning process.The objective function is the expected total cost after two stages,and the results include detailed plans for purchasing and production in each demand scenario.Small-scale problems are solved through a deterministic equivalent transformation technique.To solve the problems in the large scale,an algorithm combining metaheuristic and sample average approximation is suggested.This algorithm can be implemented in parallel to utilize the power of the solver.The algorithm based on the observation that if the remaining quantity of materials and number of units of products at the end of the initial stage are given,then the problems of the first and second stages can be decomposed.展开更多
This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to ...This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to maximize the profit, minimize the total cost, and maximize the Overall Service Level (OSL) of the customers. The system consists of three potential suppliers that serve the factory to serve three customers/distributors. The performance of the developed model is illustrated using a verification example. Discussion of the results proved the efficacy of the model. Also, the effect of the deviation percentages on the different objectives is discussed.展开更多
A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the eva...A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.展开更多
Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puti...Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puting resources.Moreover,when the task changes,the original network architecture becomes outdated and requires redesigning.Thus,Neural Architecture Search(NAS)has gained attention as an effective approach to automatically generate optimal network architectures.Most NAS methods mainly focus on achieving high performance while ignoring architectural complexity.A myriad of research has revealed that network performance and structural complexity are often positively correlated.Nevertheless,complex network structures will bring enormous computing resources.To cope with this,we formulate the neural architecture search task as a multi-objective optimization problem,where an optimal architecture is learned by minimizing the classification error rate and the number of network parameters simultaneously.And then a decomposition-based multi-objective stochastic fractal search method is proposed to solve it.In view of the discrete property of the NAS problem,we discretize the stochastic fractal search step size so that the network architecture can be optimized more effectively.Additionally,two distinct update methods are employed in step size update stage to enhance the global and local search abilities adaptively.Furthermore,an information exchange mechanism between architectures is raised to accelerate the convergence process and improve the efficiency of the algorithm.Experimental studies show that the proposed algorithm has competitive performance comparable to many existing manual and automatic deep neural network generation approaches,which achieved a parameter-less and high-precision architecture with low-cost on each of the six benchmark datasets.展开更多
This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, ener...This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.展开更多
Wind power has an increasing share of the Brazilian energy market and may represent 11.6% of total capacity by 2024. For large hydro-thermal systems having high-storage capacity, a complementarity between hydro and wi...Wind power has an increasing share of the Brazilian energy market and may represent 11.6% of total capacity by 2024. For large hydro-thermal systems having high-storage capacity, a complementarity between hydro and wind production could have important effects. The current optimization models are applied to dispatch power plants to meet the market demand and optimize the generation dispatches considering only hydroelectric and thermal power plants. The remaining sources, including wind power, small-hydroelectric plants and biomass plants, are excluded from the optimization model and are included deterministically. This work introduces a general methodology to represent the stochastic behavior of wind production aimed at the planning and operation of large interconnected power systems. In fact, considering the generation of the wind power source stochastically could show the complementarity between the hydro and wind power production, reducing the energy price in the spot market with the reduction of thermal power dispatches. In addition to that, with a reduction in wind power and a simultaneous dry-season occurrence, this model, is able to show the need of thermal power plants dispatches as well as the reduction of the risk of energy shortages.展开更多
In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem wi...In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem with stochastic demands(SDVRPSD)model and the multi-depot split delivery heterogeneous vehicle routing problem with stochastic demands(MDSDHVRPSD)model are established.A two-stage hybrid variable neighborhood tabu search algorithm is designed for unmanned vehicle task planning to minimize the path cost of rescue plans.Simulation experiments show that the solution obtained by the algorithm can effectively reduce the rescue vehicle path cost and the rescue task completion time,with high optimization quality and certain portability.展开更多
In this paper, a manufacturing supply chain system composed by a single-product machine, a buffer and a stochastic demand is considered. A stochastic fluid model is adopted to describe the system and to take into acco...In this paper, a manufacturing supply chain system composed by a single-product machine, a buffer and a stochastic demand is considered. A stochastic fluid model is adopted to describe the system and to take into account stochastic delivery times. The objective of this paper is to evaluate the optimal buffer level used in hedging point policy taken into account planned delivery times, machine failures and random demands. This optimal buffer allows minimizing the sum of inventory, transportation, lost sales and late delivery costs. Infinitesimal perturbation analysis method is used for optimizing the proposed system. Using the stochastic fluid model, the trajectories of buffer level are studied and the infinitesimal perturbation analysis estimators are evaluated. These estimators are shown to be unbiased and then they are implanted in an optimization algorithm, which determines the optimal buffer level in the presence of planned delivery time. Also in this work, we discuss the advantage of the use of the infinitesimal perturbation analysis method comparing to classical simulation methods.展开更多
Adjusting and optimizing land use structure is one of the essential approaches to solve the conflict between land supply and demand. In this study,an uncertain interval multi-objective linear programming model was est...Adjusting and optimizing land use structure is one of the essential approaches to solve the conflict between land supply and demand. In this study,an uncertain interval multi-objective linear programming model was established and applied to analyzing the suitability of land use structure in Pi County of Sichuan Province. An adjustment scheme for optimizing land use structure was proposed on the basis of development planning drawn up by the local government. The results are summarized as follows: 1) the optimal adjustment scope for cropland area ranges from 27 976.75 ha to 31 029.08 ha,and the current area is less than the lower limit of the scope; 2) the optimal adjustment scope for garden land area ranges from 4 736.49 ha to 12 967.11 ha,and the current area is less than the lower limit; 3) the optimal adjustment scope for construction land ranges from 7 761.95 ha to 10 393.18 ha,and the current area is greater than the upper limit; 4) the optimal adjustment scope for industry and mining land ranges from 557.29 ha to 693.54 ha,and the current area exceeds the upper limit; and 5) the areas of forest land,grassland and other agricultural land are within the optimal adjustment scope. In order to maximize comprehensive benefit with the limited resources and the demand of sustainable development,the areas of cropland and garden land are supposed to be expanded properly,while the construction land should be controlled and reduced gradually,and the forest land and other agricultural land can be maintained at the current level in short period.展开更多
In this paper, we study the optimal investment strategy of defined-contribution pension with the stochastic salary. The investor is allowed to invest in a risk-free asset and a risky asset whose price process follows ...In this paper, we study the optimal investment strategy of defined-contribution pension with the stochastic salary. The investor is allowed to invest in a risk-free asset and a risky asset whose price process follows a constant elasticity of variance model. The stochastic salary follows a stochastic differential equation, whose instantaneous volatility changes with the risky asset price all the time. The HJB equation associated with the optimal investment problem is established, and the explicit solution of the corresponding optimization problem for the CARA utility function is obtained by applying power transform and variable change technique. Finally, we present a numerical analysis.展开更多
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.
基金supported by the National Natural Science Foundation of China(7150118061473301)
文摘In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide. This paper proposes a general working pattern for a GEO optical satellite, as well as a target observation mission planning model. After analyzing the requirements of users and satellite control agencies, two objectives are simultaneously considered: maximization of total profit and minimization of satellite attitude maneuver angle. An NSGA-II based multi-objective optimization algorithm is proposed, which contains some heuristic principles in the initialization phase and mutation operator, and is embedded with a traveling salesman problem (TSP) optimization. The validity and performance of the proposed method are verified by extensive numerical simulations that include several types of point target distributions.
基金supported by the Science and Technology Project of State Grid Corporation of China:“Control Strategy Optimization Technology for Large-Scale Photovoltaic Power Generation on the Sending-end and Receiving-end of DC Power System”(4000-201934198A-0-0-00)
文摘The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is proposed in this paper.Several types of relationships to be coordinated and complemented are analyzed and formulated using quantitative indices.According to the graph theory,the HVDC partition is transformed into a graph-cut problem and solved via the spectral clustering algorithm.Finally,the proposed method is validated for a practical multi-HVDC grid,confirming its feasibility and effectiveness.
基金Supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR18E050003)the National Natural Science Foundation of China(Grant Nos.51975523,51905481)+2 种基金Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and Technology Innovation Plan(Xinmiao Talents Program)(Grant No.2020R403054)the China Postdoctoral Science Foundation(Grant No.2020M671784)。
文摘Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.
文摘Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependence among activity durations when more than one activity is possibly affected by the same indeterminate factors. On this basis of analysis of indeterminate effect factors of durations, the effect factors-based stochastic network planning (EFBSNP) model is proposed, which emphasizes on the effects of not only logistic and organizational relationships, but also the dependent relationships, due to indeterminate factors among activity durations on the project period. By virtue of indeterminate factor analysis the model extracts and describes the quantitatively indeterminate effect factors, and then takes into account the indeterminate factors effect schedule by using the Monte Carlo simulation technique. The method is flexible enough to deal with effect factors and is coincident with practice. A software has been developed to simplify the model-based calculation, in VisualStudio.NET language. Finally, a case study is included to demonstrate the applicability of the proposed model and comparison is made with some advantages over the existing models.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.
文摘Agriculture is a key facilitator of economic prosperity and nourishes the huge global population.To achieve sustainable agriculture,several factors should be considered,such as increasing nutrient and water efficiency and/or improving soil health and quality.Using fertilizer is one of the fastest and easiest ways to improve the quality of nutrients inland and increase the effectiveness of crop yields.Fertilizer supplies most of the necessary nutrients for plants,and it is estimated that at least 30%-50%of crop yields is attributable to commercial fertilizer nutrient inputs.Fertilizer is always a major concern in achieving sustainable and efficient agriculture.Applying reasonable and customized fertilizerswill require a significant increase in the number of formulae,involving increasing costs and the accurate forecasting of the right time to apply the suitable formulae.An alternative solution is given by two-stage production planning under stochastic demand,which divides a planning schedule into two stages.The primary stage has non-existing demand information,the inputs of which are the proportion of raw materials needed for producing fertilizer products,the cost for purchasing materials,and the production cost.The total quantity of purchased material and produced products to be used in the blending process must be defined to meet as small as possible a paid cost.At the second stage,demand appears under multiple scenarios and their respective possibilities.This stage will provide a solution for each occurring scenario to achieve the best profit.The two-stage approach is presented in this paper,the mathematical model of which is based on linear integer programming.Considering the diversity of fertilizer types,themathematicalmodel can advise manufacturers about which products will generate as much as profit as possible.Specifically,two objectives are taken into account.First,the paper’s thesis focuses on minimizing overall system costs,e.g.,including inventory cost,purchasing cost,unit cost,and ordering cost at Stage 1.Second,the thesis pays attention tomaximizing total profit based on information from customer demand,as well as being informed regarding concerns about system cost at Stage 2.
基金Supported by the National Natural Science Foundation of China(9112001591120010)
文摘To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planning is proposed based on the multi-objective genetic algorithm (MOGA) for multiple objectives traveling salesman problem (MOTSP). Then, the path between two route nodes is generated based on the heuristic path planning method A *. A simplified timeliness function for route nodes is proposed to represent the timeliness of each node. Based on the proposed timeliness function, experiments are conducted using the proposed two-stage planning method. The experimental results show that the proposed MOGA with improved fitness function can perform the searching function well when the timeliness of the searching task needs to be taken into consideration.
基金This research is funded by Vietnam National University Ho Chi Minh City(VNU-HCM)under Grant No.C2020-28-10.
文摘Stochastic demand is an important factor that heavily affects production planning.It influences activities such as purchasing,manufacturing,and selling,and quick adaption is required.In production planning,for reasons such as reducing costs and obtaining supplier discounts,many decisions must be made in the initial stage when demand has not been realized.The effects of non-optimal decisions will propagate to later stages,which can lead to losses due to overstocks or out-of-stocks.To find the optimal solutions for the initial and later stage regarding demand realization,this study proposes a stochastic two-stage linear program-ming model for a multi-supplier,multi-material,and multi-product purchasing and production planning process.The objective function is the expected total cost after two stages,and the results include detailed plans for purchasing and production in each demand scenario.Small-scale problems are solved through a deterministic equivalent transformation technique.To solve the problems in the large scale,an algorithm combining metaheuristic and sample average approximation is suggested.This algorithm can be implemented in parallel to utilize the power of the solver.The algorithm based on the observation that if the remaining quantity of materials and number of units of products at the end of the initial stage are given,then the problems of the first and second stages can be decomposed.
文摘This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to maximize the profit, minimize the total cost, and maximize the Overall Service Level (OSL) of the customers. The system consists of three potential suppliers that serve the factory to serve three customers/distributors. The performance of the developed model is illustrated using a verification example. Discussion of the results proved the efficacy of the model. Also, the effect of the deviation percentages on the different objectives is discussed.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .60 1 340 1 0 )
文摘A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.
基金supported by the China Postdoctoral Science Foundation Funded Project(Grant Nos.2017M613054 and 2017M613053)the Shaanxi Postdoctoral Science Foundation Funded Project(Grant No.2017BSHYDZZ33)the National Science Foundation of China(Grant No.62102239).
文摘Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puting resources.Moreover,when the task changes,the original network architecture becomes outdated and requires redesigning.Thus,Neural Architecture Search(NAS)has gained attention as an effective approach to automatically generate optimal network architectures.Most NAS methods mainly focus on achieving high performance while ignoring architectural complexity.A myriad of research has revealed that network performance and structural complexity are often positively correlated.Nevertheless,complex network structures will bring enormous computing resources.To cope with this,we formulate the neural architecture search task as a multi-objective optimization problem,where an optimal architecture is learned by minimizing the classification error rate and the number of network parameters simultaneously.And then a decomposition-based multi-objective stochastic fractal search method is proposed to solve it.In view of the discrete property of the NAS problem,we discretize the stochastic fractal search step size so that the network architecture can be optimized more effectively.Additionally,two distinct update methods are employed in step size update stage to enhance the global and local search abilities adaptively.Furthermore,an information exchange mechanism between architectures is raised to accelerate the convergence process and improve the efficiency of the algorithm.Experimental studies show that the proposed algorithm has competitive performance comparable to many existing manual and automatic deep neural network generation approaches,which achieved a parameter-less and high-precision architecture with low-cost on each of the six benchmark datasets.
基金financial supports and the strategic platform for innovation&research provided by Danish national project iPower.
文摘This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.
文摘Wind power has an increasing share of the Brazilian energy market and may represent 11.6% of total capacity by 2024. For large hydro-thermal systems having high-storage capacity, a complementarity between hydro and wind production could have important effects. The current optimization models are applied to dispatch power plants to meet the market demand and optimize the generation dispatches considering only hydroelectric and thermal power plants. The remaining sources, including wind power, small-hydroelectric plants and biomass plants, are excluded from the optimization model and are included deterministically. This work introduces a general methodology to represent the stochastic behavior of wind production aimed at the planning and operation of large interconnected power systems. In fact, considering the generation of the wind power source stochastically could show the complementarity between the hydro and wind power production, reducing the energy price in the spot market with the reduction of thermal power dispatches. In addition to that, with a reduction in wind power and a simultaneous dry-season occurrence, this model, is able to show the need of thermal power plants dispatches as well as the reduction of the risk of energy shortages.
基金supported by the National Natural Science Foundation of China(No.61903036)。
文摘In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem with stochastic demands(SDVRPSD)model and the multi-depot split delivery heterogeneous vehicle routing problem with stochastic demands(MDSDHVRPSD)model are established.A two-stage hybrid variable neighborhood tabu search algorithm is designed for unmanned vehicle task planning to minimize the path cost of rescue plans.Simulation experiments show that the solution obtained by the algorithm can effectively reduce the rescue vehicle path cost and the rescue task completion time,with high optimization quality and certain portability.
文摘In this paper, a manufacturing supply chain system composed by a single-product machine, a buffer and a stochastic demand is considered. A stochastic fluid model is adopted to describe the system and to take into account stochastic delivery times. The objective of this paper is to evaluate the optimal buffer level used in hedging point policy taken into account planned delivery times, machine failures and random demands. This optimal buffer allows minimizing the sum of inventory, transportation, lost sales and late delivery costs. Infinitesimal perturbation analysis method is used for optimizing the proposed system. Using the stochastic fluid model, the trajectories of buffer level are studied and the infinitesimal perturbation analysis estimators are evaluated. These estimators are shown to be unbiased and then they are implanted in an optimization algorithm, which determines the optimal buffer level in the presence of planned delivery time. Also in this work, we discuss the advantage of the use of the infinitesimal perturbation analysis method comparing to classical simulation methods.
基金Under the auspices of National Key Technology R&D Program of China (No. 2006BAB04A08)
文摘Adjusting and optimizing land use structure is one of the essential approaches to solve the conflict between land supply and demand. In this study,an uncertain interval multi-objective linear programming model was established and applied to analyzing the suitability of land use structure in Pi County of Sichuan Province. An adjustment scheme for optimizing land use structure was proposed on the basis of development planning drawn up by the local government. The results are summarized as follows: 1) the optimal adjustment scope for cropland area ranges from 27 976.75 ha to 31 029.08 ha,and the current area is less than the lower limit of the scope; 2) the optimal adjustment scope for garden land area ranges from 4 736.49 ha to 12 967.11 ha,and the current area is less than the lower limit; 3) the optimal adjustment scope for construction land ranges from 7 761.95 ha to 10 393.18 ha,and the current area is greater than the upper limit; 4) the optimal adjustment scope for industry and mining land ranges from 557.29 ha to 693.54 ha,and the current area exceeds the upper limit; and 5) the areas of forest land,grassland and other agricultural land are within the optimal adjustment scope. In order to maximize comprehensive benefit with the limited resources and the demand of sustainable development,the areas of cropland and garden land are supposed to be expanded properly,while the construction land should be controlled and reduced gradually,and the forest land and other agricultural land can be maintained at the current level in short period.
基金Supported by the National Natural Science Foundation of Tianjin (07JCYBJC05200)the Young Scholar Program of Tianjin University of Finance and Economics (TJYQ201201)
文摘In this paper, we study the optimal investment strategy of defined-contribution pension with the stochastic salary. The investor is allowed to invest in a risk-free asset and a risky asset whose price process follows a constant elasticity of variance model. The stochastic salary follows a stochastic differential equation, whose instantaneous volatility changes with the risky asset price all the time. The HJB equation associated with the optimal investment problem is established, and the explicit solution of the corresponding optimization problem for the CARA utility function is obtained by applying power transform and variable change technique. Finally, we present a numerical analysis.