In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal ...In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain a...In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.展开更多
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time...This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.展开更多
In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,...In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.展开更多
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
Minimizing transportation time and getting optimal solutions are always considered as important factors while solving transportation problem. This paper shows a new approach for finding initial basic solution for tran...Minimizing transportation time and getting optimal solutions are always considered as important factors while solving transportation problem. This paper shows a new approach for finding initial basic solution for transportation problem which reduces cost of transportation more than any transportation method such as LCM, northwest, Vogel’s approximation and so on. This method has been illustrated by taking an example;afterwards, it compares basic initial feasible solution with other methods IBF and optimal dictate solutions such as MODI and Steppingstone method.展开更多
In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to dif...In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to different factors. Finding optimal solutions to the transportation problem in the context of variations in cost is vital for ensuring cost efficiency, resource allocation, customer satisfaction, competitive advantage, environmental responsibility, risk mitigation, and operational fortitude in practical situations. This paper opens up new directions for the solution of transportation problems by introducing two key theorems. By using these theorems, we can develop an algorithm for identifying the optimal solution attributes and permitting accurate quantification of changes in overall transportation costs through the addition or subtraction of constants to specific rows or columns, as well as multiplication by constants inside the cost matrix. It is anticipated that the two reliable techniques presented in this study will provide theoretical insights and practical solutions to enhance the efficiency and cost-effectiveness of transportation systems. Finally, numerical illustrations are presented to verify the proposed approaches.展开更多
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
Transportation problem has many real world applications, it can be solved by linear programming model, but in most time the model exists more for less paradox, this paper considers the reasons for the paradox and s...Transportation problem has many real world applications, it can be solved by linear programming model, but in most time the model exists more for less paradox, this paper considers the reasons for the paradox and search the way to eliminate the phenomenon. First this paper formulates a loose constrained linear programming model for the transportation problem, and gives the definition of the paradox which exists in it, some preliminary notions and one example is also given. Then it gives a table based algorithm for the loose constrained model, the steps of the algorithm and example will follow. The examples show that: (1) It is not a contradictory that transportation problem exists more for less paradox. (2) The loose constrained model is better used in practice for its less total cost. (3) The algorithm is easy to calculate, to study and highly speed to convergence. Finally, comparied with other ways it shows that the loose constrained model can thoroughly eliminate the paradox.展开更多
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed...Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary con...The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.展开更多
This paper presents an efficient genetic algorithm for solving multiobjective transportation problem, assignment, and transshipment Problems. The proposed approach integrates the merits of both genetic algorithm (GA) ...This paper presents an efficient genetic algorithm for solving multiobjective transportation problem, assignment, and transshipment Problems. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS) scheme. The algorithm maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on clustering algorithm. The use clustering algorithm makes the algorithms practical by allowing a decision maker to control the resolution of the Pareto set approximation. To increase GAs’ problem solution power, local search technique is implemented as neighborhood search engine where it intends to explore the less-crowded area in the current archive to possibly obtain more nondominated solutions. The inclusion of local search and clustering algorithm speeds-up the search process and also helps in obtaining a fine-grained value for the objective functions. Finally, we report numerical results in order to establish the actual computational burden of the proposed algorithm and to assess its performances with respect to classical approaches for solving MOTP.展开更多
We present a direct analytical algorithm for solving transportation problems with quadratic function cost coefficients. The algorithm uses the concept of absolute points developed by the authors in earlier works. The ...We present a direct analytical algorithm for solving transportation problems with quadratic function cost coefficients. The algorithm uses the concept of absolute points developed by the authors in earlier works. The versatility of the proposed algorithm is evidenced by the fact that quadratic functions are often used as approximations for other functions, as in, for example, regression analysis. As compared with the earlier international methods for quadratic transportation problem (QTP) which are based on the Lagrangian relaxation approach, the proposed algorithm helps to understand the structure of the QTP better and can guide in managerial decisions. We present a numerical example to illustrate the application of the proposed method.展开更多
In this paper, a transportation problem with an objective function as the sum of a linear and fractional function is considered. The linear function represents the total transportation cost incurred when the goods are...In this paper, a transportation problem with an objective function as the sum of a linear and fractional function is considered. The linear function represents the total transportation cost incurred when the goods are shipped from various sources to the destinations and the fractional function gives the ratio of sales tax to the total public expenditure. Our objective is to determine the transportation schedule which minimizes the sum of total transportation cost and ratio of total sales tax paid to the total public expenditure. Sometimes, situations arise where either reserve stocks have to be kept at the supply points, for emergencies or there may be extra demand in the markets. In such situations, the total flow needs to be controlled or enhanced. In this paper, a special class of transportation problems is studied where in the total transportation flow is restricted to a known specified level. A related transportation problem is formulated and it is shown that to each basic feasible solution which is called corner feasible solution to related transportation problem, there is a corresponding feasible solution to this restricted flow problem. The optimal solution to restricted flow problem may be obtained from the optimal solution to related transportation problem. An algorithm is presented to solve a capacitated linear plus linear fractional transportation problem with restricted flow. The algorithm is supported by a real life example of a manufacturing company.展开更多
In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to ...In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to converge to the true Pareto front. Hence, the classical multi-objective genetic algorithms (MOGAs) (i.e., non- Parallel MOGAs) may fail to solve such intractable problem in a reasonable amount of time. The proposed hybrid model will combine the best attribute of island and Jakobovic master slave models. We conduct an extensive experimental study in a multi-core system by varying the different size of processors and the result is compared with basic parallel model i.e., master-slave model which is used to parallelize NSGA-II. The experimental results confirm that the hybrid model is showing a clear edge over master-slave model in terms of processing time and approximation to the true Pareto front.展开更多
Two multi-objective programming models are built to describe Pilots’ full flight simulator (FFS) recurrent training (PFRT) problem. There are two objectives for them. One is the best matching of captains and copilots...Two multi-objective programming models are built to describe Pilots’ full flight simulator (FFS) recurrent training (PFRT) problem. There are two objectives for them. One is the best matching of captains and copilots in the same aircraft type. The other is that pilots could attend his training courses at proper month. Usually the two objectives are conflicting because there are copilots who will promote to captains or transfer to other aircraft type and new trainees will enter the company every year. The main theme in the research is to find the final non-inferior solutions of PFRT problem. Graph models are built to help to analyze the problem and we convert the original problem into a longest-route problem with weighted paths. An algorithm is designed with which we can obtain all the non-inferior solutions by a graphic method. A case study is present to demonstrate the effectiveness of the algorithm as well.展开更多
In this paper, we focus on the theoretical and numerical aspects of network problems. For an illustration, we consider the urban traffic problems. And our effort is concentrated on the numerical questions to locate th...In this paper, we focus on the theoretical and numerical aspects of network problems. For an illustration, we consider the urban traffic problems. And our effort is concentrated on the numerical questions to locate the optimal network in a given domain (for example a town). Mainly, our aim is to find the network so as the distance between the population position and the network is minimized. Another problem that we are interested is to give an numerical approach of the Monge and Kantorovitch problems. In the literature, many formulations (see for example [1-4]) have not yet practical applications which deal with the permutation of points. Let us mention interesting numerical works due to E. Oudet begun since at least in 2002. He used genetic algorithms to identify optimal network (see [5]). In this paper we introduce a new reformulation of the problem by introducing permutations . And some examples, based on realistic scenarios, are solved.展开更多
In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics ...In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics to solve a system of linear equations in many applications in science.Systems of concurrent linear equations play a vital major role in operational research.The main perspective of this research paper is to find out the minimum amount of transportation cost of some supplies through a capacitated network formerly the availability and the demand notes are octagonal fuzzy numbers.Octagonal fuzzy numbers are used and showed a membership function.To illustrate this method,a fuzzy transportation problem is solved by using octagonal fuzzy numbers using the ranking technique.It is shown that it is the best optimal solution and it is demonstrated with a numerical example.展开更多
基金supported in part by the Science and Technology Project of Yunnan Tobacco Industrial Company under Grant JB2022YL02in part by the Natural Science Foundation of Henan Province of China under Grant 242300421413in part by the Henan Province Science and Technology Research Projects under Grants 242102110334 and 242102110375.
文摘In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
文摘In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.
文摘This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.
基金partly supported by the National Natural Science Foundation of China(62076225)。
文摘In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
文摘Minimizing transportation time and getting optimal solutions are always considered as important factors while solving transportation problem. This paper shows a new approach for finding initial basic solution for transportation problem which reduces cost of transportation more than any transportation method such as LCM, northwest, Vogel’s approximation and so on. This method has been illustrated by taking an example;afterwards, it compares basic initial feasible solution with other methods IBF and optimal dictate solutions such as MODI and Steppingstone method.
文摘In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to different factors. Finding optimal solutions to the transportation problem in the context of variations in cost is vital for ensuring cost efficiency, resource allocation, customer satisfaction, competitive advantage, environmental responsibility, risk mitigation, and operational fortitude in practical situations. This paper opens up new directions for the solution of transportation problems by introducing two key theorems. By using these theorems, we can develop an algorithm for identifying the optimal solution attributes and permitting accurate quantification of changes in overall transportation costs through the addition or subtraction of constants to specific rows or columns, as well as multiplication by constants inside the cost matrix. It is anticipated that the two reliable techniques presented in this study will provide theoretical insights and practical solutions to enhance the efficiency and cost-effectiveness of transportation systems. Finally, numerical illustrations are presented to verify the proposed approaches.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘Transportation problem has many real world applications, it can be solved by linear programming model, but in most time the model exists more for less paradox, this paper considers the reasons for the paradox and search the way to eliminate the phenomenon. First this paper formulates a loose constrained linear programming model for the transportation problem, and gives the definition of the paradox which exists in it, some preliminary notions and one example is also given. Then it gives a table based algorithm for the loose constrained model, the steps of the algorithm and example will follow. The examples show that: (1) It is not a contradictory that transportation problem exists more for less paradox. (2) The loose constrained model is better used in practice for its less total cost. (3) The algorithm is easy to calculate, to study and highly speed to convergence. Finally, comparied with other ways it shows that the loose constrained model can thoroughly eliminate the paradox.
基金supported in part by the National Natural Science Foundation of China(61806051,61903078)Natural Science Foundation of Shanghai(20ZR1400400)+2 种基金Agricultural Project of the Shanghai Committee of Science and Technology(16391902800)the Fundamental Research Funds for the Central Universities(2232020D-48)the Project of the Humanities and Social Sciences on Young Fund of the Ministry of Education in China(Research on swarm intelligence collaborative robust optimization scheduling for high-dimensional dynamic decisionmaking system(20YJCZH052))。
文摘Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
文摘The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.
文摘This paper presents an efficient genetic algorithm for solving multiobjective transportation problem, assignment, and transshipment Problems. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS) scheme. The algorithm maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on clustering algorithm. The use clustering algorithm makes the algorithms practical by allowing a decision maker to control the resolution of the Pareto set approximation. To increase GAs’ problem solution power, local search technique is implemented as neighborhood search engine where it intends to explore the less-crowded area in the current archive to possibly obtain more nondominated solutions. The inclusion of local search and clustering algorithm speeds-up the search process and also helps in obtaining a fine-grained value for the objective functions. Finally, we report numerical results in order to establish the actual computational burden of the proposed algorithm and to assess its performances with respect to classical approaches for solving MOTP.
文摘We present a direct analytical algorithm for solving transportation problems with quadratic function cost coefficients. The algorithm uses the concept of absolute points developed by the authors in earlier works. The versatility of the proposed algorithm is evidenced by the fact that quadratic functions are often used as approximations for other functions, as in, for example, regression analysis. As compared with the earlier international methods for quadratic transportation problem (QTP) which are based on the Lagrangian relaxation approach, the proposed algorithm helps to understand the structure of the QTP better and can guide in managerial decisions. We present a numerical example to illustrate the application of the proposed method.
文摘In this paper, a transportation problem with an objective function as the sum of a linear and fractional function is considered. The linear function represents the total transportation cost incurred when the goods are shipped from various sources to the destinations and the fractional function gives the ratio of sales tax to the total public expenditure. Our objective is to determine the transportation schedule which minimizes the sum of total transportation cost and ratio of total sales tax paid to the total public expenditure. Sometimes, situations arise where either reserve stocks have to be kept at the supply points, for emergencies or there may be extra demand in the markets. In such situations, the total flow needs to be controlled or enhanced. In this paper, a special class of transportation problems is studied where in the total transportation flow is restricted to a known specified level. A related transportation problem is formulated and it is shown that to each basic feasible solution which is called corner feasible solution to related transportation problem, there is a corresponding feasible solution to this restricted flow problem. The optimal solution to restricted flow problem may be obtained from the optimal solution to related transportation problem. An algorithm is presented to solve a capacitated linear plus linear fractional transportation problem with restricted flow. The algorithm is supported by a real life example of a manufacturing company.
文摘In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to converge to the true Pareto front. Hence, the classical multi-objective genetic algorithms (MOGAs) (i.e., non- Parallel MOGAs) may fail to solve such intractable problem in a reasonable amount of time. The proposed hybrid model will combine the best attribute of island and Jakobovic master slave models. We conduct an extensive experimental study in a multi-core system by varying the different size of processors and the result is compared with basic parallel model i.e., master-slave model which is used to parallelize NSGA-II. The experimental results confirm that the hybrid model is showing a clear edge over master-slave model in terms of processing time and approximation to the true Pareto front.
文摘Two multi-objective programming models are built to describe Pilots’ full flight simulator (FFS) recurrent training (PFRT) problem. There are two objectives for them. One is the best matching of captains and copilots in the same aircraft type. The other is that pilots could attend his training courses at proper month. Usually the two objectives are conflicting because there are copilots who will promote to captains or transfer to other aircraft type and new trainees will enter the company every year. The main theme in the research is to find the final non-inferior solutions of PFRT problem. Graph models are built to help to analyze the problem and we convert the original problem into a longest-route problem with weighted paths. An algorithm is designed with which we can obtain all the non-inferior solutions by a graphic method. A case study is present to demonstrate the effectiveness of the algorithm as well.
文摘In this paper, we focus on the theoretical and numerical aspects of network problems. For an illustration, we consider the urban traffic problems. And our effort is concentrated on the numerical questions to locate the optimal network in a given domain (for example a town). Mainly, our aim is to find the network so as the distance between the population position and the network is minimized. Another problem that we are interested is to give an numerical approach of the Monge and Kantorovitch problems. In the literature, many formulations (see for example [1-4]) have not yet practical applications which deal with the permutation of points. Let us mention interesting numerical works due to E. Oudet begun since at least in 2002. He used genetic algorithms to identify optimal network (see [5]). In this paper we introduce a new reformulation of the problem by introducing permutations . And some examples, based on realistic scenarios, are solved.
文摘In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics to solve a system of linear equations in many applications in science.Systems of concurrent linear equations play a vital major role in operational research.The main perspective of this research paper is to find out the minimum amount of transportation cost of some supplies through a capacitated network formerly the availability and the demand notes are octagonal fuzzy numbers.Octagonal fuzzy numbers are used and showed a membership function.To illustrate this method,a fuzzy transportation problem is solved by using octagonal fuzzy numbers using the ranking technique.It is shown that it is the best optimal solution and it is demonstrated with a numerical example.