Rock bursts have become one of the most severe risks in underground coal mining and its early warning is an important component in the safety management. Microseismic(MS) monitoring is considered potentially as a powe...Rock bursts have become one of the most severe risks in underground coal mining and its early warning is an important component in the safety management. Microseismic(MS) monitoring is considered potentially as a powerful tool for the early warning of rock burst. In this study, an MS multi-parameter index system was established and the critical values of each index were estimated based on the normalized multi-information warning model of coal-rock dynamic failure. This index system includes bursting strain energy(BSE) index, time-space-magnitude independent information(TSMII) indices and timespace-magnitude compound information(TSMCI) indices. On the basis of this multi-parameter index system, a comprehensive analysis was conducted via introducing the R-value scoring method to calculate the weights of each index. To calibrate the multi-parameter index system and the associated comprehensive analysis, the weights of each index were first confirmed using historical MS data occurred in LW402102 of Hujiahe Coal Mine(China) over a period of four months. This calibrated comprehensive analysis of MS multi-parameter index system was then applied to pre-warn the occurrence of a subsequent rock burst incident in LW 402103. The results demonstrate that this multi-parameter index system combined with the comprehensive analysis are capable of quantitatively pre-warning rock burst risk.展开更多
Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural ...Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural disasters were differentiated into essential attributes and external characters, and its workflow mode was established on risk early-warning structure with integrated Entropy and DEA model, whose steps were put forward. On the basis of standard risk early-warning DEA model of natural disasters, weight coefficient of risk early-warning factors was determined with Information Entropy method, which improved standard risk early-warning DEA model with non-Archimedean infinitesimal, and established risk early-warning preference DEA model based on integrated entropy weight and DEA Model. Finally, model was applied into landslide risk early-warning case in earthquake-damaged emergency process on slope engineering, which exemplified the outcome could reflect more risk information than the method of standard DEA model, and reflected the rationality, feasibility, and impersonality, revealing its better ability on comprehensive safety and structure risk.展开更多
In order to overcome the limitation that rock mass instability warnings are caused by a lack of deep consideration of the inherent mechanism of disaster formation, early warning signs of rock mass instability were det...In order to overcome the limitation that rock mass instability warnings are caused by a lack of deep consideration of the inherent mechanism of disaster formation, early warning signs of rock mass instability were detected and multi-field coupling was analyzed. A multi-field coupling model of a damaged rock mass was established. The relationship between microseismic activity parameters and rock mass stability was analyzed, and a multi-parameter early warning index system was established and its solution program was compiled. Based on the D-S data fusion theory,an early warning model of rock mass instability combining multi-field coupling analysis and microseismic monitoring was constructed. Taking an underground mine stope as an object, the multi-field coupling model and its solution program were used to analyze mining response characteristics. The seismic field data were used to verify the accuracy of the multi-field coupling analysis. The early warning model was used to predict the instability of stope rock mass,and the early warning result is consistent with a real-world scenario.展开更多
Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national e...Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.展开更多
Desertification is an environmental issue in the world. The salt-alkalization desertification land area formed by both primary and secondary salt-alkalization has extended in a large scale, which has become a signific...Desertification is an environmental issue in the world. The salt-alkalization desertification land area formed by both primary and secondary salt-alkalization has extended in a large scale, which has become a significant eco-environmental problem. Based on the characteristics of eco-environment and the situation of desertification in westem Songnen plain, this paper reports the analyzes of its formation in background and cause. An early waming system on the salt-alkalization desertification is established and the GIS technology is used to abstract the information of desertification evaluation index. Supported by the integrated technology of the GIS and ANN, the orientation and quantitative result of desertification are gained, which is helpful to the eco-environment protection and resource development in westem Songnen Plain.展开更多
Background:Early detection,timely diagnosis and rapid response are essential for case management and precautions of burn-associated sepsis.However,studies on indicators for early warning and intervention have rarely b...Background:Early detection,timely diagnosis and rapid response are essential for case management and precautions of burn-associated sepsis.However,studies on indicators for early warning and intervention have rarely been conducted.This study was performed to better understand the pathophysiological changes and targets for prevention of severe burn injuries.Methods:We conducted a multi-center,prospective multi-omics study,including genomics,microRNAomics,proteomics and single-cell transcriptomics,in 60 patients with severe burn injuries.A mouse model of severe burn injuries was also constructed to verify the early warning ability and therapeutic effects of potential markers.Results:Through genomic analysis,we identified seven important susceptibility genes(DNAH11,LAMA2,ABCA2,ZFAND4,CEP290,MUC20 and ENTPD1)in patients with severe burn injuries complicated with sepsis.Through plasma miRNAomics studies,we identified four miRNAs(hsamiR-16-5p,hsa-miR-185-5p,hsa-miR-451a and hsa-miR-423-5p)that may serve as early warning markers of burn-associated sepsis.A proteomic study indicated the changes in abundance of major proteins at different time points after severe burn injury and revealed the candidate early warning markers S100A8 and SERPINA10.In addition,the proteomic analysis indicated that neutrophils play an important role in the pathogenesis of severe burn injuries,as also supported by findings from single-cell transcriptome sequencing of neutrophils.Through further studies on severely burned mice,we determined that S100A8 is also a potential early therapeutic target for severe burn injuries,beyond being an early warning indicator.Conclusions:Our multi-omics study identified seven susceptibility genes,four miRNAs and two proteins as early warning markers for severe burn-associated sepsis.In severe burn-associated sepsis,the protein S100A8 has both warning and therapeutic effects.展开更多
基金provided by the State Key Research Development Program of China (No.2016YFC0801403)Key Research Development Program of Jiangsu Provence (No.BE2015040)+1 种基金National Natural Science Foundation of China (Nos.51674253,51734009 and 51604270)Natural Science Foundation of Jiangsu Province (No.BK20171191)
文摘Rock bursts have become one of the most severe risks in underground coal mining and its early warning is an important component in the safety management. Microseismic(MS) monitoring is considered potentially as a powerful tool for the early warning of rock burst. In this study, an MS multi-parameter index system was established and the critical values of each index were estimated based on the normalized multi-information warning model of coal-rock dynamic failure. This index system includes bursting strain energy(BSE) index, time-space-magnitude independent information(TSMII) indices and timespace-magnitude compound information(TSMCI) indices. On the basis of this multi-parameter index system, a comprehensive analysis was conducted via introducing the R-value scoring method to calculate the weights of each index. To calibrate the multi-parameter index system and the associated comprehensive analysis, the weights of each index were first confirmed using historical MS data occurred in LW402102 of Hujiahe Coal Mine(China) over a period of four months. This calibrated comprehensive analysis of MS multi-parameter index system was then applied to pre-warn the occurrence of a subsequent rock burst incident in LW 402103. The results demonstrate that this multi-parameter index system combined with the comprehensive analysis are capable of quantitatively pre-warning rock burst risk.
文摘Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural disasters were differentiated into essential attributes and external characters, and its workflow mode was established on risk early-warning structure with integrated Entropy and DEA model, whose steps were put forward. On the basis of standard risk early-warning DEA model of natural disasters, weight coefficient of risk early-warning factors was determined with Information Entropy method, which improved standard risk early-warning DEA model with non-Archimedean infinitesimal, and established risk early-warning preference DEA model based on integrated entropy weight and DEA Model. Finally, model was applied into landslide risk early-warning case in earthquake-damaged emergency process on slope engineering, which exemplified the outcome could reflect more risk information than the method of standard DEA model, and reflected the rationality, feasibility, and impersonality, revealing its better ability on comprehensive safety and structure risk.
基金Project(2017yfc0602901)supported by the National Key R&D Program of China during the Thirteenth Five-Year Plan PeriodProject(2017zzts204)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘In order to overcome the limitation that rock mass instability warnings are caused by a lack of deep consideration of the inherent mechanism of disaster formation, early warning signs of rock mass instability were detected and multi-field coupling was analyzed. A multi-field coupling model of a damaged rock mass was established. The relationship between microseismic activity parameters and rock mass stability was analyzed, and a multi-parameter early warning index system was established and its solution program was compiled. Based on the D-S data fusion theory,an early warning model of rock mass instability combining multi-field coupling analysis and microseismic monitoring was constructed. Taking an underground mine stope as an object, the multi-field coupling model and its solution program were used to analyze mining response characteristics. The seismic field data were used to verify the accuracy of the multi-field coupling analysis. The early warning model was used to predict the instability of stope rock mass,and the early warning result is consistent with a real-world scenario.
基金financially supported by National Key R&D Program of China (No. 2018YFC1505201)National Natural Science Foundation of China (No. 41901008)+2 种基金Open Fund Project of Key Laboratory of Mountain Hazards and Surface Processes of the Chinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities (Grant NO. 2682018CX05)financially supported by China Scholarship Council
文摘Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.
基金the National Natural Science Foundation of China
文摘Desertification is an environmental issue in the world. The salt-alkalization desertification land area formed by both primary and secondary salt-alkalization has extended in a large scale, which has become a significant eco-environmental problem. Based on the characteristics of eco-environment and the situation of desertification in westem Songnen plain, this paper reports the analyzes of its formation in background and cause. An early waming system on the salt-alkalization desertification is established and the GIS technology is used to abstract the information of desertification evaluation index. Supported by the integrated technology of the GIS and ANN, the orientation and quantitative result of desertification are gained, which is helpful to the eco-environment protection and resource development in westem Songnen Plain.
基金supported by the National Natural Science Foundation of China,No.82072217,81772135 and U21A20370the Jiangsu Natural Science Foundation,No.BE2017695 and BK20201178.
文摘Background:Early detection,timely diagnosis and rapid response are essential for case management and precautions of burn-associated sepsis.However,studies on indicators for early warning and intervention have rarely been conducted.This study was performed to better understand the pathophysiological changes and targets for prevention of severe burn injuries.Methods:We conducted a multi-center,prospective multi-omics study,including genomics,microRNAomics,proteomics and single-cell transcriptomics,in 60 patients with severe burn injuries.A mouse model of severe burn injuries was also constructed to verify the early warning ability and therapeutic effects of potential markers.Results:Through genomic analysis,we identified seven important susceptibility genes(DNAH11,LAMA2,ABCA2,ZFAND4,CEP290,MUC20 and ENTPD1)in patients with severe burn injuries complicated with sepsis.Through plasma miRNAomics studies,we identified four miRNAs(hsamiR-16-5p,hsa-miR-185-5p,hsa-miR-451a and hsa-miR-423-5p)that may serve as early warning markers of burn-associated sepsis.A proteomic study indicated the changes in abundance of major proteins at different time points after severe burn injury and revealed the candidate early warning markers S100A8 and SERPINA10.In addition,the proteomic analysis indicated that neutrophils play an important role in the pathogenesis of severe burn injuries,as also supported by findings from single-cell transcriptome sequencing of neutrophils.Through further studies on severely burned mice,we determined that S100A8 is also a potential early therapeutic target for severe burn injuries,beyond being an early warning indicator.Conclusions:Our multi-omics study identified seven susceptibility genes,four miRNAs and two proteins as early warning markers for severe burn-associated sepsis.In severe burn-associated sepsis,the protein S100A8 has both warning and therapeutic effects.