Approximate dynamic programming (ADP) is a general and effective approach for solving optimal control and estimation problems by adapting to uncertain and nonconvex environments over time.
This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is int...This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.展开更多
An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain varia...An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.展开更多
To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the result...To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.展开更多
Assembling paradigms programming are based on the reuses in any programming language (PL) with the passport data of their settings in WSDL. The method of assembling is formal and secures co-operation of the different ...Assembling paradigms programming are based on the reuses in any programming language (PL) with the passport data of their settings in WSDL. The method of assembling is formal and secures co-operation of the different reuses (module, object, component, service and so on) being developed. A formal means of these paradigms creation with help of interfaces is presented. Interface IDL (Stub, Skeleton) is containing data and operations for transmission data to other standard elements linked and describes in the standard language IDL. Assembling will be realized by integration of reuses elements in these paradigms on the instrumental-technological complex (ITC).展开更多
For satate form linear gram as Fang and sao deined and approach which would find an optimal solution by solving an anconstrained convex dual programming.Thedual was construcied by applying an emropic peturbation and a...For satate form linear gram as Fang and sao deined and approach which would find an optimal solution by solving an anconstrained convex dual programming.Thedual was construcied by applying an emropic peturbation and a simple Inequality Inz【z-1 for z】0n,In this paper,we suggest than a paperbation functiontake the place of Inx such that the new approdt has good numerical stability andhas all properties of the original展开更多
The objective of the paper is to deal with a kind of possibilistic linear programming (PLP) problem involving multiple objectives of conflicting nature. In particular, we have considered a multi objective linear progr...The objective of the paper is to deal with a kind of possibilistic linear programming (PLP) problem involving multiple objectives of conflicting nature. In particular, we have considered a multi objective linear programming (MOLP) problem whose objective is to simultaneously minimize cost and maximize profit in a supply chain where cost and profit coefficients, and related parameters such as available supply, forecast demand and budget are fuzzy with trapezoidal fuzzy numbers. An example is given to illustrate the strategy used to solve the aforesaid PLP problem.展开更多
The maximum clique or maximum independent set of graph is a classical problem in graph theory. Com- bined with Boolean algebra and integer programming, two integer programming models for maximum clique problem, which ...The maximum clique or maximum independent set of graph is a classical problem in graph theory. Com- bined with Boolean algebra and integer programming, two integer programming models for maximum clique problem, which improve the old results were designed in this paper. Then, the programming model for maximum independent set is a corollary of the main results. These two models can be easily applied to computer algorithm and software, and suitable for graphs of any scale. Finally the models are presented as Lingo algorithms, verified and compared by sev- eral examples.展开更多
The existence of strongly polynomial algorithm for linear programming (LP) has been widely sought after for decades. Recently, a new approach called Gravity Sliding algorithm [1] has emerged. It is a gradient descendi...The existence of strongly polynomial algorithm for linear programming (LP) has been widely sought after for decades. Recently, a new approach called Gravity Sliding algorithm [1] has emerged. It is a gradient descending method whereby the descending trajectory slides along the inner surfaces of a polyhedron until it reaches the optimal point. In R3, a water droplet pulled by gravitational force traces the shortest path to descend to the lowest point. As the Gravity Sliding algorithm emulates the water droplet trajectory, it exhibits strongly polynomial behavior in R3. We believe that it could be a strongly polynomial algorithm for linear programming in Rn too. In fact, our algorithm can solve the Klee-Minty deformed cube problem in only two iterations, irrespective of the dimension of the cube. The core of gravity sliding algorithm is how to calculate the projection of the gravity vector g onto the intersection of a group of facets, which is disclosed in the same paper [1]. In this paper, we introduce a more efficient method to compute the gradient projections on complementary facets, and rename it the Sliding Gradient algorithm under the new projection calculation.展开更多
We employ uncertain programming to investigate the competitive logistics distribution center location problem in uncertain environment, in which the demands of customers and the setup costs of new distribution centers...We employ uncertain programming to investigate the competitive logistics distribution center location problem in uncertain environment, in which the demands of customers and the setup costs of new distribution centers are uncertain variables. This research was studied with the assumption that customers patronize the nearest distribution center to satisfy their full demands. Within the framework of uncertainty theory, we construct the expected value model to maximize the expected profit of the new distribution center. In order to seek for the optimal solution, this model can be transformed into its deterministic form by taking advantage of the operational law of uncertain variables. Then we can use mathematical software to obtain the optimal location. In addition, a numerical example is presented to illustrate the effectiveness of the presented model.展开更多
Let be an undirected graph. The maximum cycle packing problem in G then is to find a collection of edge-disjoint cycles C<sub>i</sup>in G such that s is maximum. In general, the maximum cycle packing probl...Let be an undirected graph. The maximum cycle packing problem in G then is to find a collection of edge-disjoint cycles C<sub>i</sup>in G such that s is maximum. In general, the maximum cycle packing problem is NP-hard. In this paper, it is shown for even graphs that if such a collection satisfies the condition that it minimizes the quantityon the set of all edge-disjoint cycle collections, then it is a maximum cycle packing. The paper shows that the determination of such a packing can be solved by a dynamic programming approach. For its solution, an-shortest path procedure on an appropriate acyclic networkis presented. It uses a particular monotonous node potential.展开更多
With the prevailing and popular entertainment programs, it brought huge benefits to TV stations, but at the same time caused a variety problems of homogenization. The paper analyzes the causes of the entertainment pro...With the prevailing and popular entertainment programs, it brought huge benefits to TV stations, but at the same time caused a variety problems of homogenization. The paper analyzes the causes of the entertainment programs, the root of homogenization, building game theory models between TV stations, TV station and audience to regulate and control the issue of homogeneity about entertainment programs.展开更多
In this paper we study L-shaped convex programming. An algorithm for it is given. The result of computation shows that the algorithm is effective. The algorithm can be applied to two stage problem of stochastic convex...In this paper we study L-shaped convex programming. An algorithm for it is given. The result of computation shows that the algorithm is effective. The algorithm can be applied to two stage problem of stochastic convex programming.展开更多
文摘Approximate dynamic programming (ADP) is a general and effective approach for solving optimal control and estimation problems by adapting to uncertain and nonconvex environments over time.
基金supported in part by the National Key Reseanch and Development Program of China(2018AAA0101502,2018YFB1702300)in part by the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)in part by the Intel Collaborative Research Institute for Intelligent and Automated Connected Vehicles。
文摘This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.
基金supported by the National Natural Science Foundation of China(71601183 71571190)
文摘An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(72001213)the basic research program of Natural Science of Shaanxi Province,China(2021JQ-369).
文摘To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.
文摘Assembling paradigms programming are based on the reuses in any programming language (PL) with the passport data of their settings in WSDL. The method of assembling is formal and secures co-operation of the different reuses (module, object, component, service and so on) being developed. A formal means of these paradigms creation with help of interfaces is presented. Interface IDL (Stub, Skeleton) is containing data and operations for transmission data to other standard elements linked and describes in the standard language IDL. Assembling will be realized by integration of reuses elements in these paradigms on the instrumental-technological complex (ITC).
基金The project was supported by the National Natural Science Fundation of China
文摘For satate form linear gram as Fang and sao deined and approach which would find an optimal solution by solving an anconstrained convex dual programming.Thedual was construcied by applying an emropic peturbation and a simple Inequality Inz【z-1 for z】0n,In this paper,we suggest than a paperbation functiontake the place of Inx such that the new approdt has good numerical stability andhas all properties of the original
文摘The objective of the paper is to deal with a kind of possibilistic linear programming (PLP) problem involving multiple objectives of conflicting nature. In particular, we have considered a multi objective linear programming (MOLP) problem whose objective is to simultaneously minimize cost and maximize profit in a supply chain where cost and profit coefficients, and related parameters such as available supply, forecast demand and budget are fuzzy with trapezoidal fuzzy numbers. An example is given to illustrate the strategy used to solve the aforesaid PLP problem.
文摘The maximum clique or maximum independent set of graph is a classical problem in graph theory. Com- bined with Boolean algebra and integer programming, two integer programming models for maximum clique problem, which improve the old results were designed in this paper. Then, the programming model for maximum independent set is a corollary of the main results. These two models can be easily applied to computer algorithm and software, and suitable for graphs of any scale. Finally the models are presented as Lingo algorithms, verified and compared by sev- eral examples.
文摘The existence of strongly polynomial algorithm for linear programming (LP) has been widely sought after for decades. Recently, a new approach called Gravity Sliding algorithm [1] has emerged. It is a gradient descending method whereby the descending trajectory slides along the inner surfaces of a polyhedron until it reaches the optimal point. In R3, a water droplet pulled by gravitational force traces the shortest path to descend to the lowest point. As the Gravity Sliding algorithm emulates the water droplet trajectory, it exhibits strongly polynomial behavior in R3. We believe that it could be a strongly polynomial algorithm for linear programming in Rn too. In fact, our algorithm can solve the Klee-Minty deformed cube problem in only two iterations, irrespective of the dimension of the cube. The core of gravity sliding algorithm is how to calculate the projection of the gravity vector g onto the intersection of a group of facets, which is disclosed in the same paper [1]. In this paper, we introduce a more efficient method to compute the gradient projections on complementary facets, and rename it the Sliding Gradient algorithm under the new projection calculation.
文摘We employ uncertain programming to investigate the competitive logistics distribution center location problem in uncertain environment, in which the demands of customers and the setup costs of new distribution centers are uncertain variables. This research was studied with the assumption that customers patronize the nearest distribution center to satisfy their full demands. Within the framework of uncertainty theory, we construct the expected value model to maximize the expected profit of the new distribution center. In order to seek for the optimal solution, this model can be transformed into its deterministic form by taking advantage of the operational law of uncertain variables. Then we can use mathematical software to obtain the optimal location. In addition, a numerical example is presented to illustrate the effectiveness of the presented model.
文摘Let be an undirected graph. The maximum cycle packing problem in G then is to find a collection of edge-disjoint cycles C<sub>i</sup>in G such that s is maximum. In general, the maximum cycle packing problem is NP-hard. In this paper, it is shown for even graphs that if such a collection satisfies the condition that it minimizes the quantityon the set of all edge-disjoint cycle collections, then it is a maximum cycle packing. The paper shows that the determination of such a packing can be solved by a dynamic programming approach. For its solution, an-shortest path procedure on an appropriate acyclic networkis presented. It uses a particular monotonous node potential.
文摘With the prevailing and popular entertainment programs, it brought huge benefits to TV stations, but at the same time caused a variety problems of homogenization. The paper analyzes the causes of the entertainment programs, the root of homogenization, building game theory models between TV stations, TV station and audience to regulate and control the issue of homogeneity about entertainment programs.
基金This work is supported by Science Research Foundation (20262250) of the Education Department of Liaoning Province.
文摘In this paper we study L-shaped convex programming. An algorithm for it is given. The result of computation shows that the algorithm is effective. The algorithm can be applied to two stage problem of stochastic convex programming.