Fatty acid metabolism is responsible not only for oilseed metabolism but also for plant responses to abiotic stresses. In this study, three novel genes related to fatty acid degradation designated GhACX, Gh4CL, and Gh...Fatty acid metabolism is responsible not only for oilseed metabolism but also for plant responses to abiotic stresses. In this study, three novel genes related to fatty acid degradation designated GhACX, Gh4CL, and GhMFP, respectively, were isolated from Gossypium hirsutum acc. TM-1. The phylogenetic analysis revealed that amino acid sequences of GhACXand GhMFP have the highest homology with those from Vitis vinifera, and Gh4CL has a closer genetic relationship with that from Camellia sinensis. Tissue- and organ-specific analysis showed that the three genes expressed widely in all the tested tissues, including ovules and fiber at different developing stages, with expressed preferentially in some organs. Among them, GhACX showed the most abundant transcripts in seeds at 25 d post anthesis (DPA), however, GhMFP and Gh4CL have the strongest expression level in ovules on the day of anthesis. Based on real-time quantitative RT-PCR, the three genes were differentially regulated when induced under wounding, methyl jasmonate (MeJA), cold, and abscisic acid (ABA) treatments. The characterization and expression pattern of three novel fatty acid degradation related genes will aid both to understand the roles of fatty acid degradation related genes as precursor in stress stimuli and to elucidate the physiological function in cotton oilseed metabolism.展开更多
A suitable liquid chromatography quadrupole time-of-flight mass spectrometric(LC–Q-TOF–MS) method was developed for separation and characterization of related substances in bacitracin test drug. The separation was p...A suitable liquid chromatography quadrupole time-of-flight mass spectrometric(LC–Q-TOF–MS) method was developed for separation and characterization of related substances in bacitracin test drug. The separation was performed on Li Chrospher RP-18 column using methanol as mobile phase A and 0.2% ammonium acetate buffer solution as mobile phase B in gradient elution. A total of 12 related substances were detected through high resolution mass spectrometric determination in a positive electrospray ionization mode. They were identified as co-existing active components and degradation products of bacitracin through the analysis and elucidation of both the protonated parents and the product ions of all the related substances and their fragmentation pathways were also proposed.展开更多
A sensitive and selective method was developed for the separation and characterization of related substances(RSs) in EVT-401 by hyphenated LC–MS techniques. Complete separation of the RSs was achieved with an Inertsi...A sensitive and selective method was developed for the separation and characterization of related substances(RSs) in EVT-401 by hyphenated LC–MS techniques. Complete separation of the RSs was achieved with an Inertsil ODS-SP column(250 mm×4.6 mm, 5 μm) by linear gradient elution using a mobile phase consisting of 0.2% formic acid solution, methanol and acetonitrile. EVT-401 was found to be susceptible to acid, alkaline and oxidative stresses, while relatively stable under photolytic and thermal dry stress conditions. Fourteen RSs including six process-related substances and eight degradation products were detected and identified in EVT-401 with positive ESI high-resolution TOF-MS analysis of their parent ions and the corresponding product mass spectra elucidation, and some of them were further verified by chemical synthesis and NMR spectroscopy. The specific LC–MS method developed for separation, identification and characterization of RSs is valuable for EVT-401 manufacturing process optimization and quality control.展开更多
Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating auto...Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating automotive protocol, performed on five single fuel cells under RH(relative humidity) 100%,RH 80%, RH 64%, and RH 40%, RH 10%, respectively, to study the relationship of MEA decays and humidity and suggest optimized humidity range to extend the durability. With the electrochemical impedance spectroscopy, cyclic voltammetry, X-ray fluorescence, X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, the four degradation mechanisms about catalyst layer, including Pt dissolution, Pt coarsening, carbon corrosion and ionomer degradation, are observed. Pt coarsening and carbon corrosion are accelerated by higher water content at high humidity. Ionomer degradation and Pt dissolution are enhanced in low humidity. With the linear sweep voltammetry, ion chromatography,nuclear magnetic resonance, tensile test and scan electron microscope, chemical and mechanical degradation in proton exchange membrane are all observed in these five fuels. Chemical degradation, characterized by membrane thinning and more fluoride loss, occurred markedly in RH 10%. Mechanical degradation, characterized by the non-uniformity thickness and bad mechanical properties, is more pronounced in RH 100%, RH 80%, RH 64%. These two degradations are in a moderate level in RH 40%. The research suggests that the RH range from 64% to 40% is conductive to mitigate the degradation of MEAs operated in automotive applications.展开更多
Relative abundance and relationships between aniline, phenol and catechol degraders were investigated in unpolluted and polluted fresh waters in Osaka prefecture, Japan. Phenol and catechol degraders were found more f...Relative abundance and relationships between aniline, phenol and catechol degraders were investigated in unpolluted and polluted fresh waters in Osaka prefecture, Japan. Phenol and catechol degraders were found more frequently compared to aniline degraders. The results indicate that these degraders were more abundant in polluted waters than in unpolluted waters. Aniline degraders isolated from the Ina River water showed a higher capability of degrading catechol than phenol. Analysis on sequence homology among these three kinds of degraders indicated a possible relationship between aniline degraders and certain strains of both catechol and phenol degraders.展开更多
Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex c...Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks.展开更多
Background Diffusion tensor imaging can evaluate white matter function in human brain.Fractional anisotropy is the most important parameter.This study aimed to find regional reduction of fractional anisotropy (FA) w...Background Diffusion tensor imaging can evaluate white matter function in human brain.Fractional anisotropy is the most important parameter.This study aimed to find regional reduction of fractional anisotropy (FA) with aging in the whole brain and the changing rules of anisotropy with aging.Methods Fifty volunteers from 20 to 75 years old were divided into five consecutive age groups; a young group and four senior groups.FA values were calculated with diffusion tensor imaging (DTI) studio software.The difference of FA between the young group and the four senior groups were analyzed by analysis of voxel-level height threshold in Statistic Parametric Mapping (SPM),and the regions with decreased FA were obtained.The FA values of these regions were then extracted using an in-house developed program,and a multiple linear regression model was built to assess the influence of age and sex on the FA values of these regions.Results Eight regions,including frontal lobe,postcentral gyrus,optic radiation,hippocampus,cerebella hemisphere,corona radiate,corpus callosum and internal capsule,were found to have decreased FA.There was a strong negative correlation between age and the FA in the frontal lobe,postcentral gyrus,optic radiation,hippocampus,and cerebella hemisphere,while a weaker negative correlation in the corona radiate,corpus callosum,and internal capsule was found.The FA reduction in the frontal lobe,postcentral gyrus,optic radiation,hippocampus and cerebella hemisphere were found earlier than in the corona radiate,corpus callosum and internal capsule.There was no correlation between sex and FA in these regions.Conclusions The FA in the subcortical white matter area reduces earlier than that in deep white matter.The areas with decreased FA continuously enlarge with aqing.The FAs in these regions have a strong negative correlation with age.展开更多
In this paper,the mechanical degradation of natural fiber composites is studied with the consideration of the relative humidity and the temperature.A nonlinear constitutive model is established,which employs an intern...In this paper,the mechanical degradation of natural fiber composites is studied with the consideration of the relative humidity and the temperature.A nonlinear constitutive model is established,which employs an internal variable to describe the mechanical degradation related to the energy dissipation during moisture absorption.The existing experimental researches demonstrated that the mechanical degradation is an irreversible thermodynamic process induced by the degradation of fibers and the damages of interfaces between fiber and matrix,both of which depend on the variation of the relative humidity or the temperature.The evolution of the mechanical degradation is obtained through the determination of dissipation rates as a function of the relative humidity and the temperature.The theoretically predicted mechanical degradations are compared with experimental results of sisal fiber reinforced composites subject to different relative humidity and temperatures,and a good agreement is found.展开更多
基金financially supported in part by the National Basic Research Program of China (2011CB109300)the National Transgenic Program, China (2011ZX005-004)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Fatty acid metabolism is responsible not only for oilseed metabolism but also for plant responses to abiotic stresses. In this study, three novel genes related to fatty acid degradation designated GhACX, Gh4CL, and GhMFP, respectively, were isolated from Gossypium hirsutum acc. TM-1. The phylogenetic analysis revealed that amino acid sequences of GhACXand GhMFP have the highest homology with those from Vitis vinifera, and Gh4CL has a closer genetic relationship with that from Camellia sinensis. Tissue- and organ-specific analysis showed that the three genes expressed widely in all the tested tissues, including ovules and fiber at different developing stages, with expressed preferentially in some organs. Among them, GhACX showed the most abundant transcripts in seeds at 25 d post anthesis (DPA), however, GhMFP and Gh4CL have the strongest expression level in ovules on the day of anthesis. Based on real-time quantitative RT-PCR, the three genes were differentially regulated when induced under wounding, methyl jasmonate (MeJA), cold, and abscisic acid (ABA) treatments. The characterization and expression pattern of three novel fatty acid degradation related genes will aid both to understand the roles of fatty acid degradation related genes as precursor in stress stimuli and to elucidate the physiological function in cotton oilseed metabolism.
基金financially supported by both the National Natural Science Foundation (NO. 81402900)the Fundamental Research Funds for the Central Universities of the Ministry of Education (NO. 2015PT043) of China
文摘A suitable liquid chromatography quadrupole time-of-flight mass spectrometric(LC–Q-TOF–MS) method was developed for separation and characterization of related substances in bacitracin test drug. The separation was performed on Li Chrospher RP-18 column using methanol as mobile phase A and 0.2% ammonium acetate buffer solution as mobile phase B in gradient elution. A total of 12 related substances were detected through high resolution mass spectrometric determination in a positive electrospray ionization mode. They were identified as co-existing active components and degradation products of bacitracin through the analysis and elucidation of both the protonated parents and the product ions of all the related substances and their fragmentation pathways were also proposed.
文摘A sensitive and selective method was developed for the separation and characterization of related substances(RSs) in EVT-401 by hyphenated LC–MS techniques. Complete separation of the RSs was achieved with an Inertsil ODS-SP column(250 mm×4.6 mm, 5 μm) by linear gradient elution using a mobile phase consisting of 0.2% formic acid solution, methanol and acetonitrile. EVT-401 was found to be susceptible to acid, alkaline and oxidative stresses, while relatively stable under photolytic and thermal dry stress conditions. Fourteen RSs including six process-related substances and eight degradation products were detected and identified in EVT-401 with positive ESI high-resolution TOF-MS analysis of their parent ions and the corresponding product mass spectra elucidation, and some of them were further verified by chemical synthesis and NMR spectroscopy. The specific LC–MS method developed for separation, identification and characterization of RSs is valuable for EVT-401 manufacturing process optimization and quality control.
基金supported by the National Key Research and Development Program of China (2018YFB1502502)the National Natural Science Foundation of China (22179127)。
文摘Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating automotive protocol, performed on five single fuel cells under RH(relative humidity) 100%,RH 80%, RH 64%, and RH 40%, RH 10%, respectively, to study the relationship of MEA decays and humidity and suggest optimized humidity range to extend the durability. With the electrochemical impedance spectroscopy, cyclic voltammetry, X-ray fluorescence, X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, the four degradation mechanisms about catalyst layer, including Pt dissolution, Pt coarsening, carbon corrosion and ionomer degradation, are observed. Pt coarsening and carbon corrosion are accelerated by higher water content at high humidity. Ionomer degradation and Pt dissolution are enhanced in low humidity. With the linear sweep voltammetry, ion chromatography,nuclear magnetic resonance, tensile test and scan electron microscope, chemical and mechanical degradation in proton exchange membrane are all observed in these five fuels. Chemical degradation, characterized by membrane thinning and more fluoride loss, occurred markedly in RH 10%. Mechanical degradation, characterized by the non-uniformity thickness and bad mechanical properties, is more pronounced in RH 100%, RH 80%, RH 64%. These two degradations are in a moderate level in RH 40%. The research suggests that the RH range from 64% to 40% is conductive to mitigate the degradation of MEAs operated in automotive applications.
文摘Relative abundance and relationships between aniline, phenol and catechol degraders were investigated in unpolluted and polluted fresh waters in Osaka prefecture, Japan. Phenol and catechol degraders were found more frequently compared to aniline degraders. The results indicate that these degraders were more abundant in polluted waters than in unpolluted waters. Aniline degraders isolated from the Ina River water showed a higher capability of degrading catechol than phenol. Analysis on sequence homology among these three kinds of degraders indicated a possible relationship between aniline degraders and certain strains of both catechol and phenol degraders.
基金This study was funded by the National Natural Science Foundation of China(42062019,42002283)the Project of Qinghai Science&Technology Department(2021-ZJ-927).
文摘Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks.
文摘Background Diffusion tensor imaging can evaluate white matter function in human brain.Fractional anisotropy is the most important parameter.This study aimed to find regional reduction of fractional anisotropy (FA) with aging in the whole brain and the changing rules of anisotropy with aging.Methods Fifty volunteers from 20 to 75 years old were divided into five consecutive age groups; a young group and four senior groups.FA values were calculated with diffusion tensor imaging (DTI) studio software.The difference of FA between the young group and the four senior groups were analyzed by analysis of voxel-level height threshold in Statistic Parametric Mapping (SPM),and the regions with decreased FA were obtained.The FA values of these regions were then extracted using an in-house developed program,and a multiple linear regression model was built to assess the influence of age and sex on the FA values of these regions.Results Eight regions,including frontal lobe,postcentral gyrus,optic radiation,hippocampus,cerebella hemisphere,corona radiate,corpus callosum and internal capsule,were found to have decreased FA.There was a strong negative correlation between age and the FA in the frontal lobe,postcentral gyrus,optic radiation,hippocampus,and cerebella hemisphere,while a weaker negative correlation in the corona radiate,corpus callosum,and internal capsule was found.The FA reduction in the frontal lobe,postcentral gyrus,optic radiation,hippocampus and cerebella hemisphere were found earlier than in the corona radiate,corpus callosum and internal capsule.There was no correlation between sex and FA in these regions.Conclusions The FA in the subcortical white matter area reduces earlier than that in deep white matter.The areas with decreased FA continuously enlarge with aqing.The FAs in these regions have a strong negative correlation with age.
基金supported by National Natural Science Foundation of China(Grant No.11572227)
文摘In this paper,the mechanical degradation of natural fiber composites is studied with the consideration of the relative humidity and the temperature.A nonlinear constitutive model is established,which employs an internal variable to describe the mechanical degradation related to the energy dissipation during moisture absorption.The existing experimental researches demonstrated that the mechanical degradation is an irreversible thermodynamic process induced by the degradation of fibers and the damages of interfaces between fiber and matrix,both of which depend on the variation of the relative humidity or the temperature.The evolution of the mechanical degradation is obtained through the determination of dissipation rates as a function of the relative humidity and the temperature.The theoretically predicted mechanical degradations are compared with experimental results of sisal fiber reinforced composites subject to different relative humidity and temperatures,and a good agreement is found.