Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the inc...Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the increased possibility of premature explosions in loaded blastholes.Thus,it is crucial to load the blastholes with an appropriate amount of explosives within a short period to avoid premature detonation caused by high temperatures of blastholes.Additionally,it will help achieve the desired fragment size.This study tried to ascertain the most influencial variables of mean fragment size and their optimum values adopted for blasting in a fiery seam.Data on blast design,rock mass,and fragmentation of 100 blasts in fiery seams of a coal mine were collected and used to develop mean fragmentation prediction models using soft computational techniques.The coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute error(MAE),mean square error(MSE),variance account for(VAF)and coefficient of efficiency in percentage(CE)were calculated to validate the results.It indicates that the random forest algorithm(RFA)outperforms the artificial neural network(ANN),response surface method(RSM),and decision tree(DT).The values of R^(2),RMSE,MAE,MSE,VAF,and CE for RFA are 0.94,0.034,0.027,0.001,93.58,and 93.01,respectively.Multiple parametric sensitivity analyses(MPSAs)of the input variables showed that the Schmidt hammer rebound number and spacing-to-burden ratio are the most influencial variables for the blast fragment size.The analysis was finally used to define the best blast design variables to achieve optimum fragment size from blasting.The optimum factor values for RFA of S/B,ld/B and ls/ld are 1.03,1.85 and 0.7,respectively.展开更多
Using a bottom simulating reflector(BSR)on a seismic profile to identify marine gas hydrate is a traditional seismic exploration method.However,owing to the abundance differences between the gas hydrate and free gas i...Using a bottom simulating reflector(BSR)on a seismic profile to identify marine gas hydrate is a traditional seismic exploration method.However,owing to the abundance differences between the gas hydrate and free gas in different regions,the BSR may be unremarkable on the seismic profile and invisible in certain cases.With the improvement of exploration precision,difficulty arises in meeting the requirements of distinguishing the abundance differences in the gas hydrate based on BSR.Hence,we studied other sensitive attributes to ascertain the existence of gas hydrate and its abundance variations,eventually improving the success rate of drilling and productivity.In this paper,we analyzed the contradiction between the seismic profile data and drilling sampling data from the Blake Ridge.We extracted different attributes and performed multi-parameter constraint analysis based on the prestack elastic wave impedance inversion.Then,we compared the analysis results with the drilling sampling data.Eventually,we determined five sensitive attributes that can better indicate the existence of gas hydrate and its abundance variations.This method overcomes the limitations of recognizing the gas hydrate methods based on BSR or single inversion attribute.Moreover,the conclusions can notably improve the identification accuracy of marine gas hydrate and provide excellent reference significance for the recognition of marine gas hydrate.Notably,the different geological features of reservoirs feature different sensitivities to the prestacking attributes when using the prestack elastic inversion in different areas.展开更多
文摘Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the increased possibility of premature explosions in loaded blastholes.Thus,it is crucial to load the blastholes with an appropriate amount of explosives within a short period to avoid premature detonation caused by high temperatures of blastholes.Additionally,it will help achieve the desired fragment size.This study tried to ascertain the most influencial variables of mean fragment size and their optimum values adopted for blasting in a fiery seam.Data on blast design,rock mass,and fragmentation of 100 blasts in fiery seams of a coal mine were collected and used to develop mean fragmentation prediction models using soft computational techniques.The coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute error(MAE),mean square error(MSE),variance account for(VAF)and coefficient of efficiency in percentage(CE)were calculated to validate the results.It indicates that the random forest algorithm(RFA)outperforms the artificial neural network(ANN),response surface method(RSM),and decision tree(DT).The values of R^(2),RMSE,MAE,MSE,VAF,and CE for RFA are 0.94,0.034,0.027,0.001,93.58,and 93.01,respectively.Multiple parametric sensitivity analyses(MPSAs)of the input variables showed that the Schmidt hammer rebound number and spacing-to-burden ratio are the most influencial variables for the blast fragment size.The analysis was finally used to define the best blast design variables to achieve optimum fragment size from blasting.The optimum factor values for RFA of S/B,ld/B and ls/ld are 1.03,1.85 and 0.7,respectively.
基金supported by the National Natural Science Foundation of China (No. 41230318)
文摘Using a bottom simulating reflector(BSR)on a seismic profile to identify marine gas hydrate is a traditional seismic exploration method.However,owing to the abundance differences between the gas hydrate and free gas in different regions,the BSR may be unremarkable on the seismic profile and invisible in certain cases.With the improvement of exploration precision,difficulty arises in meeting the requirements of distinguishing the abundance differences in the gas hydrate based on BSR.Hence,we studied other sensitive attributes to ascertain the existence of gas hydrate and its abundance variations,eventually improving the success rate of drilling and productivity.In this paper,we analyzed the contradiction between the seismic profile data and drilling sampling data from the Blake Ridge.We extracted different attributes and performed multi-parameter constraint analysis based on the prestack elastic wave impedance inversion.Then,we compared the analysis results with the drilling sampling data.Eventually,we determined five sensitive attributes that can better indicate the existence of gas hydrate and its abundance variations.This method overcomes the limitations of recognizing the gas hydrate methods based on BSR or single inversion attribute.Moreover,the conclusions can notably improve the identification accuracy of marine gas hydrate and provide excellent reference significance for the recognition of marine gas hydrate.Notably,the different geological features of reservoirs feature different sensitivities to the prestacking attributes when using the prestack elastic inversion in different areas.