Freeze concentration has great potential in treating wastewaters containing soluble pollutions. It is important for freeze concentration process to produce ice crystals with large size and high purity. In this work ra...Freeze concentration has great potential in treating wastewaters containing soluble pollutions. It is important for freeze concentration process to produce ice crystals with large size and high purity. In this work raw urines of 4660 -7914 mg/L in COD, 512. 71 -872. 41 mg/L in NH3 -N and 22600 -28800 μs/cm in electric conductivity were studied. Urines were frozen by a digital refrigerated circulator bath. Ice crystals were purified by ice-water steep and vacuum filtration. The COD, NH3 - N, and electric conductivity levels of the melted ices were measured to reflect ice crystal purity. Effects of coolant temperature, ice crystal shape, initial solution temperature, solution concentration, ice seeding, re-crystallization process and crystallization time on ice crystal purity were analyzed. The results show that an appropriate coolant temperature, suspended ice crystals, an initial solution temperature of about 6 ℃, introduction of seed ice, addition of re-crystallization process, and crystallization time of less than 30 min axe in favor of producing ice crystals with high purity. Under such conditions, more than 99 percent of inorganic salts, COD and NH3 - N sources in raw urine could he removed.展开更多
Water-washing removes fluoride from Antarctic krill but produces large volumes of wash water containing water-soluble proteins and fluoride. The freeze concentration method was tested to determine if it could be used ...Water-washing removes fluoride from Antarctic krill but produces large volumes of wash water containing water-soluble proteins and fluoride. The freeze concentration method was tested to determine if it could be used to recover water-soluble proteins while leaving the fluoride in solution. After freezing and thawing the wash water, protein and fluoride contents of the thawed fractions were determined to explore the melting regularity of components in the wash water. The highest concentration factors of protein and fluoride were obtained after 80 min of thawing, such as 1.48 ± 0.06 and 1.35 ± 0.04 times, respectively. The free amino-nitrogen(FAN) content and sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern results revealed that the highest concentrations of all ingredients were obtained after 80 min of the process. The degree of hydrolysis of all fractions from the thawing process fluctuated in a narrow range around 12% during the entire process, indicating that the thawing order did not change with various proteins or time during the entire thawing course. These results demonstrate that the freeze concentration method can be used to concentrate protein solutions, even those with fluoride. It was concluded that condensation was achieved and no ingredient could be separated, regardless of fluoride, amino acids, or different proteins in the water.展开更多
This study presents a novel design for a spiral finned crystallizer which is the primary element of progressive freeze concentration(PFC) system, which simplifies the setup of the conventional system. After the crysta...This study presents a novel design for a spiral finned crystallizer which is the primary element of progressive freeze concentration(PFC) system, which simplifies the setup of the conventional system. After the crystallizer has been designed, the research experiments have been conducted and evaluated through a thorough analysis of its performance by developing a mathematical model that can be used to predict the productivity of ice crystal at a range of coolant temperature. The model is developed based on the basic heat transfer equation, and by considering the solution's and the coolant's convective heat transfer coefficient(h) under the forced flow condition.The model's accuracy is verified by making comparison between the ice crystal mass' experimental value and the values predicted by the model. Consequently, the study found that the model helps in enhancing the PFC system.展开更多
Response surface methodology (RSM) was employed to optimize the process parameters for effective partition constant (K) in progressive freeze concentration (PFC) of wastewater. The effects of coolant temperature, circ...Response surface methodology (RSM) was employed to optimize the process parameters for effective partition constant (K) in progressive freeze concentration (PFC) of wastewater. The effects of coolant temperature, circulation flowrate, initial solution concentration and circulation time on the effective partition constant were observed. Results show that the data were adequately fitted into a second-order polynomial model. The linear and quadratic of independent variables, coolant temperature, circulation flowrate, initial solution concentration and circulation time as well as their interactions have significant effects on the effective partition constant. It was predicted that the optimum process parameters within the experimental ranges for the best K would be with coolant temperature of -8.8℃, circulation flowrate of 1051.1 ml/min, initial solution concentration of 6.59 mg/ml and circulation time of 13.9 minutes. Under these conditions, the effective partition constant is predicted to be 0.17.展开更多
Human milk is the ideal nutritional support for premature neonates. Considering the need for aggregating nutritional value to human milk provided to such vulnerable group of infants, human milk was concentrated by the...Human milk is the ideal nutritional support for premature neonates. Considering the need for aggregating nutritional value to human milk provided to such vulnerable group of infants, human milk was concentrated by the block freeze concentration technique. The effects of freeze concentration on the physicochemical properties, the efficiency of the process, color parameters, and the density and dynamic viscosity of human milk were assessed. The freeze concentration technology was used to successfully concentrate human milk to a factor equal to 180.48% and 72% of total solid retention in the second stage of freeze concentration. The values observed in the concentrates for the biochemical properties showed that the fraction of concentrated fluid human milk of the second stage (C2) presented elevated amounts of carbohydrates, protein and energy. The elevated caloric value observed in the ice fraction of the first stage (I1) refers to the retention of lipids in it. When added to human milk, C2 and I1 may satisfy the special requisites of nutrients and energy to guarantee the growth and development of preterm neonates.展开更多
Mineral salts are of great importance on the regulation of different metabolic activities of living organisms. The well-functioning of the body depends on mineral salts. These salts, existing naturally in small quanti...Mineral salts are of great importance on the regulation of different metabolic activities of living organisms. The well-functioning of the body depends on mineral salts. These salts, existing naturally in small quantity in our diverse diets (grains, legumes, fruit, tea, egg, etc.), are concentrated in seawater. In this paper, the indirect fi'eezing is used as a concentration process to recover the most of salt minerals naturally present in seawater. Freezing is known as a purification process, but this paper recovers the brine instead of the formed ice. A 3.5% salinity solution with an appropriate setup is used to recover the maximum of salt in the brine. The work aims to develop a process for freezing salt concentration on cold walls. The influence of operating parameters has highlighted the important role of the cooling ramp and stay time on the salt concentration produced.展开更多
为探究冻融循环对食用菌预制菌汤的品质影响,本文以鲜菌汤为参照,对比了冻融过程中微生物数量、菌汤色泽、可溶性蛋白、还原糖、总酚含量等基本指标的变化,并基于超高效液相检测和气相色谱-质谱法分析冻融过程菌汤等鲜度和挥发性风味物...为探究冻融循环对食用菌预制菌汤的品质影响,本文以鲜菌汤为参照,对比了冻融过程中微生物数量、菌汤色泽、可溶性蛋白、还原糖、总酚含量等基本指标的变化,并基于超高效液相检测和气相色谱-质谱法分析冻融过程菌汤等鲜度和挥发性风味物质差异。研究表明,首次冻融大幅减少了菌汤的还原糖、总酚和总氨基酸含量,显著降低了菌汤等鲜度和挥发性成分含量,综合影响了菌汤的成分与风味。进一步通过冻融次数(1~5次)之间的对比,反复冻融3次菌汤可溶性蛋白含量相较于冻融1~2次显著降低(P<0.05),此外,等鲜度由1~2次冻融的0.441~0.450 g MSG/100 g直接下降至0.407 g MSG/100 g,同时微生物开始检出。在此后4~5次冻融过程中,虽然菌汤总酚、总氨基酸含量和等鲜度相对稳定,但核苷酸、可溶性蛋白和挥发性成分不断减少且菌落总数不断升高。因此,预制菌汤若需冻融处理则应控制在2次内为宜。展开更多
We experimentally compare the output abilities of lightly and heavily doped Ti:Sapphire(Ti:S) amplifiers with diameters as large as 150 mm. Although a lightly doped Ti:S is more favorable to overcome parasitic la...We experimentally compare the output abilities of lightly and heavily doped Ti:Sapphire(Ti:S) amplifiers with diameters as large as 150 mm. Although a lightly doped Ti:S is more favorable to overcome parasitic lasing(PL)and transverse amplified spontaneous emission(TASE), the self-phase-modulation(SPM) effect becomes more pronounced when a longer crystal is used. Recompression of the amplified, stretched pulses can be seriously affected by the SPM effect. We then propose a temporal multi-pulse pump scheme to suppress PL and TASE in a thin, heavily doped Ti:S crystal. This novel temporal multi-pulse pump technique can find potential applications in 10 PW chirped-pulse amplification laser systems.展开更多
基金Sponsored by the High Technology Research and Development Programm of China(Grant No.2002AA743022).
文摘Freeze concentration has great potential in treating wastewaters containing soluble pollutions. It is important for freeze concentration process to produce ice crystals with large size and high purity. In this work raw urines of 4660 -7914 mg/L in COD, 512. 71 -872. 41 mg/L in NH3 -N and 22600 -28800 μs/cm in electric conductivity were studied. Urines were frozen by a digital refrigerated circulator bath. Ice crystals were purified by ice-water steep and vacuum filtration. The COD, NH3 - N, and electric conductivity levels of the melted ices were measured to reflect ice crystal purity. Effects of coolant temperature, ice crystal shape, initial solution temperature, solution concentration, ice seeding, re-crystallization process and crystallization time on ice crystal purity were analyzed. The results show that an appropriate coolant temperature, suspended ice crystals, an initial solution temperature of about 6 ℃, introduction of seed ice, addition of re-crystallization process, and crystallization time of less than 30 min axe in favor of producing ice crystals with high purity. Under such conditions, more than 99 percent of inorganic salts, COD and NH3 - N sources in raw urine could he removed.
基金supported by the Key Research and Development Project of Shandong Province (No.2015 GSF115005)the Huimin Special Fund of Qingdao Municipal Achievement Transformation Plan (No.15-9-2-120NSH)the National Natural Science Foundation of China (No.31101380)
文摘Water-washing removes fluoride from Antarctic krill but produces large volumes of wash water containing water-soluble proteins and fluoride. The freeze concentration method was tested to determine if it could be used to recover water-soluble proteins while leaving the fluoride in solution. After freezing and thawing the wash water, protein and fluoride contents of the thawed fractions were determined to explore the melting regularity of components in the wash water. The highest concentration factors of protein and fluoride were obtained after 80 min of thawing, such as 1.48 ± 0.06 and 1.35 ± 0.04 times, respectively. The free amino-nitrogen(FAN) content and sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern results revealed that the highest concentrations of all ingredients were obtained after 80 min of the process. The degree of hydrolysis of all fractions from the thawing process fluctuated in a narrow range around 12% during the entire process, indicating that the thawing order did not change with various proteins or time during the entire thawing course. These results demonstrate that the freeze concentration method can be used to concentrate protein solutions, even those with fluoride. It was concluded that condensation was achieved and no ingredient could be separated, regardless of fluoride, amino acids, or different proteins in the water.
基金the financial support through Research University Grant and Fundamental Research Grant Scheme(Vot nos.04H46 and 4F224)Chemical Engineering Department,Universiti Teknologi PETRONAS for its support
文摘This study presents a novel design for a spiral finned crystallizer which is the primary element of progressive freeze concentration(PFC) system, which simplifies the setup of the conventional system. After the crystallizer has been designed, the research experiments have been conducted and evaluated through a thorough analysis of its performance by developing a mathematical model that can be used to predict the productivity of ice crystal at a range of coolant temperature. The model is developed based on the basic heat transfer equation, and by considering the solution's and the coolant's convective heat transfer coefficient(h) under the forced flow condition.The model's accuracy is verified by making comparison between the ice crystal mass' experimental value and the values predicted by the model. Consequently, the study found that the model helps in enhancing the PFC system.
文摘Response surface methodology (RSM) was employed to optimize the process parameters for effective partition constant (K) in progressive freeze concentration (PFC) of wastewater. The effects of coolant temperature, circulation flowrate, initial solution concentration and circulation time on the effective partition constant were observed. Results show that the data were adequately fitted into a second-order polynomial model. The linear and quadratic of independent variables, coolant temperature, circulation flowrate, initial solution concentration and circulation time as well as their interactions have significant effects on the effective partition constant. It was predicted that the optimum process parameters within the experimental ranges for the best K would be with coolant temperature of -8.8℃, circulation flowrate of 1051.1 ml/min, initial solution concentration of 6.59 mg/ml and circulation time of 13.9 minutes. Under these conditions, the effective partition constant is predicted to be 0.17.
文摘Human milk is the ideal nutritional support for premature neonates. Considering the need for aggregating nutritional value to human milk provided to such vulnerable group of infants, human milk was concentrated by the block freeze concentration technique. The effects of freeze concentration on the physicochemical properties, the efficiency of the process, color parameters, and the density and dynamic viscosity of human milk were assessed. The freeze concentration technology was used to successfully concentrate human milk to a factor equal to 180.48% and 72% of total solid retention in the second stage of freeze concentration. The values observed in the concentrates for the biochemical properties showed that the fraction of concentrated fluid human milk of the second stage (C2) presented elevated amounts of carbohydrates, protein and energy. The elevated caloric value observed in the ice fraction of the first stage (I1) refers to the retention of lipids in it. When added to human milk, C2 and I1 may satisfy the special requisites of nutrients and energy to guarantee the growth and development of preterm neonates.
文摘Mineral salts are of great importance on the regulation of different metabolic activities of living organisms. The well-functioning of the body depends on mineral salts. These salts, existing naturally in small quantity in our diverse diets (grains, legumes, fruit, tea, egg, etc.), are concentrated in seawater. In this paper, the indirect fi'eezing is used as a concentration process to recover the most of salt minerals naturally present in seawater. Freezing is known as a purification process, but this paper recovers the brine instead of the formed ice. A 3.5% salinity solution with an appropriate setup is used to recover the maximum of salt in the brine. The work aims to develop a process for freezing salt concentration on cold walls. The influence of operating parameters has highlighted the important role of the cooling ramp and stay time on the salt concentration produced.
文摘为探究冻融循环对食用菌预制菌汤的品质影响,本文以鲜菌汤为参照,对比了冻融过程中微生物数量、菌汤色泽、可溶性蛋白、还原糖、总酚含量等基本指标的变化,并基于超高效液相检测和气相色谱-质谱法分析冻融过程菌汤等鲜度和挥发性风味物质差异。研究表明,首次冻融大幅减少了菌汤的还原糖、总酚和总氨基酸含量,显著降低了菌汤等鲜度和挥发性成分含量,综合影响了菌汤的成分与风味。进一步通过冻融次数(1~5次)之间的对比,反复冻融3次菌汤可溶性蛋白含量相较于冻融1~2次显著降低(P<0.05),此外,等鲜度由1~2次冻融的0.441~0.450 g MSG/100 g直接下降至0.407 g MSG/100 g,同时微生物开始检出。在此后4~5次冻融过程中,虽然菌汤总酚、总氨基酸含量和等鲜度相对稳定,但核苷酸、可溶性蛋白和挥发性成分不断减少且菌落总数不断升高。因此,预制菌汤若需冻融处理则应控制在2次内为宜。
文摘We experimentally compare the output abilities of lightly and heavily doped Ti:Sapphire(Ti:S) amplifiers with diameters as large as 150 mm. Although a lightly doped Ti:S is more favorable to overcome parasitic lasing(PL)and transverse amplified spontaneous emission(TASE), the self-phase-modulation(SPM) effect becomes more pronounced when a longer crystal is used. Recompression of the amplified, stretched pulses can be seriously affected by the SPM effect. We then propose a temporal multi-pulse pump scheme to suppress PL and TASE in a thin, heavily doped Ti:S crystal. This novel temporal multi-pulse pump technique can find potential applications in 10 PW chirped-pulse amplification laser systems.