The realization way of snake rolling was introduced. Flow velocity, strain and stress distribution of 7075 aluminum alloy plate during snake rolling and symmetrical rolling were analyzed in Deform 3D. Effects of veloc...The realization way of snake rolling was introduced. Flow velocity, strain and stress distribution of 7075 aluminum alloy plate during snake rolling and symmetrical rolling were analyzed in Deform 3D. Effects of velocity ratio, offset distance between two rolls and pass reduction on the distribution of equivalent strain and shear strain were analyzed. The results show that flow velocity and equivalent strain on the lower layer of the plate are larger than those of the upper layer because of the larger velocity of the lower roll and the gap is increased with the increase of velocity ratio and pass reduction. The shear strain of roiling direction in the center point is almost zero during symmetrical rolling, while it is much larger during snake rolling because of the existence of rub zone. The shear strain is increased with the increase of velocity ratio, offset distance and pass reduction. This additional shear strain is beneficial to improve the in_homogeneous strain distribution.展开更多
In order to predict the plate curvature during snake rolling, FE model was constructed based on plane strain assumption. The accuracy of the FE model was verified by the comparison between the plate curvature conducte...In order to predict the plate curvature during snake rolling, FE model was constructed based on plane strain assumption. The accuracy of the FE model was verified by the comparison between the plate curvature conducted by FE model and experiment respectively. By using FE model, the effect of offset distance, speed ratio, reduction, roll radius and initial plate thickness on the plate curvature during snake rolling was investigated. The experimental results show that, a proper offsetting distance can efficiently decrease plate curvature, however an excessive offsetting distance will increase plate curvature. A larger speed ratio, reduction will cause a large plate curvature, however a larger roll radius has effect to reduce plate curvature. Plate which undergoes a larger reduction and plate with a larger initial thickness always need a larger offset distance to keep the plate the minimum plate curvature, but for a larger roll radius a smaller offset distance is needed.展开更多
In order to continuously simulate multi-pass plate rolling process,a 3-D elastic hollow-roll model was proposed and an auto mesh-refining module with data passing was developed and integrated with FE software,Marc.The...In order to continuously simulate multi-pass plate rolling process,a 3-D elastic hollow-roll model was proposed and an auto mesh-refining module with data passing was developed and integrated with FE software,Marc.The hollow-roll model has equivalent stiffness of bending resistance and deformation to the real solid and much less meshes,so the computational time is greatly reduced.Based on these,the factors influencing plate profile,such as the roll-bending force,initial crown,thermal crown and heat transfer during rolling and inter-pass cooling can be taken into account in the simulation.The auto mesh-refining module with data passing can automatically refine and re-number elements and transfer the nodal and elemental results to the new meshes.Furthermore,the 3-D modeling routine is parametrically developed and can be run independently of Marc pre-processing program.A seven-pass industrial hot rolling process was continuously simulated to validate the accuracy of model.By comparison of the calculated results with the industrial measured data,the rolling force,temperature and plate profile are in good accordance with the measured ones.展开更多
In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesse...In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesses, pass reductions, speed ratios and offset distances on the bending value of the plate were analyzed. ‘Quasi smooth plate' and optimum offset distance were defined and quasi smooth plate could be acquired by adjusting offset distance, and then bending control equation was fitted. The results show that bending value of the plate as well as the extent of the increase grows with the increase of pass reduction and decrease of initial thickness; the bending value firstly increases and then keeps steady with the ascending speed ratio; the bending value can be reduced by enlarging the offset distance. The optimum offset distance varies for different rolling parameters and it is augmented with the increase of pass reduction and speed ratio and the decrease of initial thickness. A proper offset distance for different rolling parameters can be calculated by the bending control equation and this equation can be a guidance to acquire a quasi smooth plate. The FEM results agree well with experimental results.展开更多
In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio ...In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio and offset distance on strain distribution of the plate are analyzed. The length of cross shear zone is defined to have a better understanding of the deformation characteristic in cross shear zone, which is the essential difference from symmetrical rolling in deformation zone. The results show that the equivalent strain and shear strain of lower part both increase with the increase of speed ratio, while the upper part decreases; the equivalent strain through the whole thickness decreases with ascending offset distance, while the shear strain of lower part increases. The length of cross shear zone quickly increases with ascending speed ratio and slightly decreases with ascending offset distance. The "positive" and "negative" cross shear zones are formed with the increase of speed ratio and offset distance, respectively. The value of the sensitivity coefficient of speed ratio is an order of magnitude bigger than the offset distance. However, the shear strain at center point increases with the ascending speed ratio and offset distance for different mechanism. As speed ratio increases, the asymmetry of the distribution of equivalent is becoming larger and the shear strain is generated in the same direction in cross shear zone. The FEM results agree well with experimental results.展开更多
Multi-pass slab vertical-horizontal (V-H) rolling process with variable edging roll shape have been simulated with explicit dynamic finite element method and updating geometric method. The distributions of plastic s...Multi-pass slab vertical-horizontal (V-H) rolling process with variable edging roll shape have been simulated with explicit dynamic finite element method and updating geometric method. The distributions of plastic strain contour in slab daring rolling process with different edging roll and under different rolling stage have been obtained. The results show that there exist two thin strain assembling zones in slab when the flat edging roll is used, and there just exist one strain assembling zone in slab when the edging roll with groove is used. And compared the deformation equality between flat edging roll and edging roll with groove, the lateris better than the former, which supplies the theory prove to the slab deformation distribution during V-H rolling process and is helpful for predicting the slab texture.展开更多
Snake robots have great potential for exploring and operating in challenging unstructured environments,such as rubble,caves,and narrow pipelines.However,due to the complexity and unpredictability of unstructured envir...Snake robots have great potential for exploring and operating in challenging unstructured environments,such as rubble,caves,and narrow pipelines.However,due to the complexity and unpredictability of unstructured environments,designing a controller that can achieve adaptive motion is crucial.This paper proposes a self-adaptive torque-based rolling controller for snake robots,enabling compliant motion in unstructured environments.First,a controller is designed to modify the torque of each motor by focusing on the different motion states of the rolling gait.Second,an experimental platform is established for snake robots to verify the effectiveness of the controller.Finally,a series of rolling experiments are conducted using the torque-based rolling controller.In conclusion,the self-adaptive torque-based rolling controller enhances snake robot adaptability and mobility.展开更多
Deformation allocation is an important factor that affects 720°curling forming from copper-coated steel strips to double-walled brazed tubes(DWBTs).In this study,four schemes of deformation allocation,considering...Deformation allocation is an important factor that affects 720°curling forming from copper-coated steel strips to double-walled brazed tubes(DWBTs).In this study,four schemes of deformation allocation,considering different weights of the total feed distance,are proposed,and a 3D finite element(FE)model of the multi-pass roll forming process for DWBT is developed and verified to investigate the cross-sectional evolution and deformation features.The results show the following.(i)In the 720°curling forming process from the steel strip into double-walled tubes,the curvature of the formed circular arc initially increases and then remains stable with roll forming,and the inner and outer tubes of the DWBT are formed in the third and fifth forming passes.Size forming can eliminate the gap between the double walls and improve the overall roundness.(ii)For different deformation allocations,the cross-sectional profiles of the roll-formed parts exhibit a discrepancy,and the deformation amount varies with the roll-forming process.The deformation amount in Scheme three is the maximum,and the cross-sectional profile deviates significantly from the ideal shape and fails to form a DWBT,which indicates that the deformation allocation is unsuitable.(iii)The roundness of the outer tube is better than that of the inner tube.Therefore,the roundness of the inner tube is the key to restricting the forming accuracy of the DWBT.Compared with Schemes one and two,Scheme four with a linear allocation of the total feed distance exhibits the best roundness,and the deformation allocation is reasonable;i.e.,when the contact points between the rollers and steel strip are in a straight line,the roundness of the DWBT is in good agreement with the ideal condition.展开更多
This work gives a comparison on the microstructural characteristics,textural discrepancies,and twinning behaviors of lamellar and equiaxed nearβ-Ti alloys during multi-pass cross rolling with a rolling reduction of 2...This work gives a comparison on the microstructural characteristics,textural discrepancies,and twinning behaviors of lamellar and equiaxed nearβ-Ti alloys during multi-pass cross rolling with a rolling reduction of 20%,50%and 80%.The results showed that the restoration mechanism of the alloy inβphase is strongly dependent on theαmorphologies,and in comparison,strain path has weaker influences on the grain refinement of theβmatrix.Therefore,the texture intensities of bothαandβphases were weakened owing to the dynamic recrystallization(DRX)of the two phases in the equiaxed microstructure.While,with regard to the lamellar microstructure,dynamic recovery(DRV)of theβphase predominated,forming elongatedβsubgrains.Besides,theαandβmatrix in lamellar microstructures obeyed the Burgers orientation relationship,which was gradually broken down until the final reduction.Lastly,the{1101}twinning exhibits a strong size effect.With the continuous DRX ofαphases,theα-twinning is suppressed owing to progressive grain refinement.The activation ofβ-twinning,namely{332}?113?and{112}?111?,in nearβ-Ti alloys is heavily dependent on the deficientβ-stabilizing elements and the local stress concentration.These findings provide an effective way to obtain ultra-fine grain microstructures of this alloy.展开更多
基金Projects(2012CB619505,2010CB731703)supported by the National Basic Research Program of ChinaProject(CX2013B065)supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(117308)supported by Postdoctoral Science Foundation of Central South University,China
文摘The realization way of snake rolling was introduced. Flow velocity, strain and stress distribution of 7075 aluminum alloy plate during snake rolling and symmetrical rolling were analyzed in Deform 3D. Effects of velocity ratio, offset distance between two rolls and pass reduction on the distribution of equivalent strain and shear strain were analyzed. The results show that flow velocity and equivalent strain on the lower layer of the plate are larger than those of the upper layer because of the larger velocity of the lower roll and the gap is increased with the increase of velocity ratio and pass reduction. The shear strain of roiling direction in the center point is almost zero during symmetrical rolling, while it is much larger during snake rolling because of the existence of rub zone. The shear strain is increased with the increase of velocity ratio, offset distance and pass reduction. This additional shear strain is beneficial to improve the in_homogeneous strain distribution.
基金Funded by the Chinese "973" Project (No.2010CB735811)
文摘In order to predict the plate curvature during snake rolling, FE model was constructed based on plane strain assumption. The accuracy of the FE model was verified by the comparison between the plate curvature conducted by FE model and experiment respectively. By using FE model, the effect of offset distance, speed ratio, reduction, roll radius and initial plate thickness on the plate curvature during snake rolling was investigated. The experimental results show that, a proper offsetting distance can efficiently decrease plate curvature, however an excessive offsetting distance will increase plate curvature. A larger speed ratio, reduction will cause a large plate curvature, however a larger roll radius has effect to reduce plate curvature. Plate which undergoes a larger reduction and plate with a larger initial thickness always need a larger offset distance to keep the plate the minimum plate curvature, but for a larger roll radius a smaller offset distance is needed.
基金Project(20050248007) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to continuously simulate multi-pass plate rolling process,a 3-D elastic hollow-roll model was proposed and an auto mesh-refining module with data passing was developed and integrated with FE software,Marc.The hollow-roll model has equivalent stiffness of bending resistance and deformation to the real solid and much less meshes,so the computational time is greatly reduced.Based on these,the factors influencing plate profile,such as the roll-bending force,initial crown,thermal crown and heat transfer during rolling and inter-pass cooling can be taken into account in the simulation.The auto mesh-refining module with data passing can automatically refine and re-number elements and transfer the nodal and elemental results to the new meshes.Furthermore,the 3-D modeling routine is parametrically developed and can be run independently of Marc pre-processing program.A seven-pass industrial hot rolling process was continuously simulated to validate the accuracy of model.By comparison of the calculated results with the industrial measured data,the rolling force,temperature and plate profile are in good accordance with the measured ones.
基金Projects(2012CB619505,2010CB731703)supported by the National Basic Research Program of ChinaProject(CX2013B065)supported by Hunan Provincial Innovation Foundation for Postgraduate,China+1 种基金Project(51405520)supported by the National Natural Science Foundation of ChinaProject(zzyjkt2013-06B)supported by the State Key Laboratory of High Performance Complex Manufacturing(Central South University),China
文摘In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesses, pass reductions, speed ratios and offset distances on the bending value of the plate were analyzed. ‘Quasi smooth plate' and optimum offset distance were defined and quasi smooth plate could be acquired by adjusting offset distance, and then bending control equation was fitted. The results show that bending value of the plate as well as the extent of the increase grows with the increase of pass reduction and decrease of initial thickness; the bending value firstly increases and then keeps steady with the ascending speed ratio; the bending value can be reduced by enlarging the offset distance. The optimum offset distance varies for different rolling parameters and it is augmented with the increase of pass reduction and speed ratio and the decrease of initial thickness. A proper offset distance for different rolling parameters can be calculated by the bending control equation and this equation can be a guidance to acquire a quasi smooth plate. The FEM results agree well with experimental results.
基金Project(51405520)supported by the National Natural Science Foundation of ChinaProject(2012CB619505)supported by National Basic Research Program of China
文摘In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio and offset distance on strain distribution of the plate are analyzed. The length of cross shear zone is defined to have a better understanding of the deformation characteristic in cross shear zone, which is the essential difference from symmetrical rolling in deformation zone. The results show that the equivalent strain and shear strain of lower part both increase with the increase of speed ratio, while the upper part decreases; the equivalent strain through the whole thickness decreases with ascending offset distance, while the shear strain of lower part increases. The length of cross shear zone quickly increases with ascending speed ratio and slightly decreases with ascending offset distance. The "positive" and "negative" cross shear zones are formed with the increase of speed ratio and offset distance, respectively. The value of the sensitivity coefficient of speed ratio is an order of magnitude bigger than the offset distance. However, the shear strain at center point increases with the ascending speed ratio and offset distance for different mechanism. As speed ratio increases, the asymmetry of the distribution of equivalent is becoming larger and the shear strain is generated in the same direction in cross shear zone. The FEM results agree well with experimental results.
文摘Multi-pass slab vertical-horizontal (V-H) rolling process with variable edging roll shape have been simulated with explicit dynamic finite element method and updating geometric method. The distributions of plastic strain contour in slab daring rolling process with different edging roll and under different rolling stage have been obtained. The results show that there exist two thin strain assembling zones in slab when the flat edging roll is used, and there just exist one strain assembling zone in slab when the edging roll with groove is used. And compared the deformation equality between flat edging roll and edging roll with groove, the lateris better than the former, which supplies the theory prove to the slab deformation distribution during V-H rolling process and is helpful for predicting the slab texture.
基金supported by the National Natural Science Foundation of China(62072335)Fundamental Research Funds for the Central Universities,China(buctrc202215).
文摘Snake robots have great potential for exploring and operating in challenging unstructured environments,such as rubble,caves,and narrow pipelines.However,due to the complexity and unpredictability of unstructured environments,designing a controller that can achieve adaptive motion is crucial.This paper proposes a self-adaptive torque-based rolling controller for snake robots,enabling compliant motion in unstructured environments.First,a controller is designed to modify the torque of each motor by focusing on the different motion states of the rolling gait.Second,an experimental platform is established for snake robots to verify the effectiveness of the controller.Finally,a series of rolling experiments are conducted using the torque-based rolling controller.In conclusion,the self-adaptive torque-based rolling controller enhances snake robot adaptability and mobility.
基金the National Natural Science Foundation of China(Grant No.52275379).
文摘Deformation allocation is an important factor that affects 720°curling forming from copper-coated steel strips to double-walled brazed tubes(DWBTs).In this study,four schemes of deformation allocation,considering different weights of the total feed distance,are proposed,and a 3D finite element(FE)model of the multi-pass roll forming process for DWBT is developed and verified to investigate the cross-sectional evolution and deformation features.The results show the following.(i)In the 720°curling forming process from the steel strip into double-walled tubes,the curvature of the formed circular arc initially increases and then remains stable with roll forming,and the inner and outer tubes of the DWBT are formed in the third and fifth forming passes.Size forming can eliminate the gap between the double walls and improve the overall roundness.(ii)For different deformation allocations,the cross-sectional profiles of the roll-formed parts exhibit a discrepancy,and the deformation amount varies with the roll-forming process.The deformation amount in Scheme three is the maximum,and the cross-sectional profile deviates significantly from the ideal shape and fails to form a DWBT,which indicates that the deformation allocation is unsuitable.(iii)The roundness of the outer tube is better than that of the inner tube.Therefore,the roundness of the inner tube is the key to restricting the forming accuracy of the DWBT.Compared with Schemes one and two,Scheme four with a linear allocation of the total feed distance exhibits the best roundness,and the deformation allocation is reasonable;i.e.,when the contact points between the rollers and steel strip are in a straight line,the roundness of the DWBT is in good agreement with the ideal condition.
基金financial supports from the National Natural Science Foundation of China(No.51871242)Scientific and technological innovation projects of Hunan Province,China(No.2017GK2292)the National Key R&D Program of China(2018YFB0704100)。
文摘This work gives a comparison on the microstructural characteristics,textural discrepancies,and twinning behaviors of lamellar and equiaxed nearβ-Ti alloys during multi-pass cross rolling with a rolling reduction of 20%,50%and 80%.The results showed that the restoration mechanism of the alloy inβphase is strongly dependent on theαmorphologies,and in comparison,strain path has weaker influences on the grain refinement of theβmatrix.Therefore,the texture intensities of bothαandβphases were weakened owing to the dynamic recrystallization(DRX)of the two phases in the equiaxed microstructure.While,with regard to the lamellar microstructure,dynamic recovery(DRV)of theβphase predominated,forming elongatedβsubgrains.Besides,theαandβmatrix in lamellar microstructures obeyed the Burgers orientation relationship,which was gradually broken down until the final reduction.Lastly,the{1101}twinning exhibits a strong size effect.With the continuous DRX ofαphases,theα-twinning is suppressed owing to progressive grain refinement.The activation ofβ-twinning,namely{332}?113?and{112}?111?,in nearβ-Ti alloys is heavily dependent on the deficientβ-stabilizing elements and the local stress concentration.These findings provide an effective way to obtain ultra-fine grain microstructures of this alloy.