In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the ...In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre- conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES) is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi- tioned matrix are real and located in a positive interval. Eigenvector distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are obtained. A practical parameter is suggested in implementing the RHSS preconditioner. Finally, some numerical experiments are illustrated to show the effectiveness of the new preconditioner.展开更多
This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feas...This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feasible augmented La-grangian,which can be solved by the augmented Lagrangian method in an infinite dimensional setting.Based on this,by expressing the primal and dual variables with two individual deep neural network functions,we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimiza-tion method together with a projection technique.Compared to the traditional penalty method,the new method admits two main advantages:i)the choice of the penalty parameter isflexible and robust,and ii)the numerical solution is more accurate in the same magnitude of computational cost.As typical applications,we apply the new ap-proach to solve elliptic problems and(nonlinear)eigenvalue problems with essential boundary conditions,and numerical experiments are presented to show the effective-ness of the new method.展开更多
基金Acknowledgments. The authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript. This work is supported by the National Natural Science Foundation of China(11172192) and the National Natural Science Pre-Research Foundation of Soochow University (SDY2011B01).
文摘In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre- conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES) is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi- tioned matrix are real and located in a positive interval. Eigenvector distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are obtained. A practical parameter is suggested in implementing the RHSS preconditioner. Finally, some numerical experiments are illustrated to show the effectiveness of the new preconditioner.
基金supported by the National Key Research and Development Project(Grant No.2020YFA0709800)NSFC(Grant No.12071289)+4 种基金Shanghai Municipal Science and Technology Major Project(2021SHZDZX0102)supported by the National Key R&D Program of China(2020YFA0712000)NSFC(under grant numbers 11822111,11688101)the science challenge project(No.TZ2018001)youth innovation promotion association(CAS).
文摘This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feasible augmented La-grangian,which can be solved by the augmented Lagrangian method in an infinite dimensional setting.Based on this,by expressing the primal and dual variables with two individual deep neural network functions,we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimiza-tion method together with a projection technique.Compared to the traditional penalty method,the new method admits two main advantages:i)the choice of the penalty parameter isflexible and robust,and ii)the numerical solution is more accurate in the same magnitude of computational cost.As typical applications,we apply the new ap-proach to solve elliptic problems and(nonlinear)eigenvalue problems with essential boundary conditions,and numerical experiments are presented to show the effective-ness of the new method.