Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro...Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.展开更多
To improve the accuracy of real-time public transport information release system, a collaborative prediction model was proposed based on cyber-physical systems architecture. In the model, the total bus travel time was...To improve the accuracy of real-time public transport information release system, a collaborative prediction model was proposed based on cyber-physical systems architecture. In the model, the total bus travel time was divided into three parts: running time, dwell time and intersection delay time, and the data were divided into three categories of historical data, static data and real-time data. The bus arrival time was obtained by fusion computing the real-time data in perception layer together with historical data and static data in collaborative layer. The validity of the collaborative model was verified by the data of a typical urban bus line in Shanghai, and 1538 sets of data were collected and analyzed from three different perspectives. By comparing the experimental results with the actual results, it is shown that the experimental results are with higher prediction accuracy, and the collaborative prediction model adopted is able to meet the demand for bus arrival prediction.展开更多
Recommender systems are rapidly transforming the digital world into intelligent information hubs.The valuable context information associated with the users’prior transactions has played a vital role in determining th...Recommender systems are rapidly transforming the digital world into intelligent information hubs.The valuable context information associated with the users’prior transactions has played a vital role in determining the user preferences for items or rating prediction.It has been a hot research topic in collaborative filtering-based recommender systems for the last two decades.This paper presents a novel Context Based Rating Prediction(CBRP)model with a unique similarity scoring estimation method.The proposed algorithm computes a context score for each candidate user to construct a similarity pool for the given subject user-item pair and intuitively choose the highly influential users to forecast the item ratings.The context scoring strategy has an inherent capability to incorporate multiple conditional factors to filter down the most relevant recommendations.Compared with traditional similarity estimation methods,CBRP makes it possible for the full use of neighboring collaborators’choice on various conditions.We conduct experiments on three publicly available datasets to evaluate our proposed method with random user-item pairs and got considerable improvement in prediction accuracy over the standard evaluation measures.Also,we evaluate prediction accuracy for every user-item pair in the system and the results show that our proposed framework has outperformed existing methods.展开更多
Many online platforms providing crowd with opportunities to participate in software development projects have been existed for a while. Meanwhile, many enterprises are using crowd source to collaboratively develop the...Many online platforms providing crowd with opportunities to participate in software development projects have been existed for a while. Meanwhile, many enterprises are using crowd source to collaboratively develop their software via these platforms in recent years. However, some software development projects in these platforms hardly attract users to join. Therefore, these project owners need a way to effectively predict the number of participants in their projects and accordingly well plan their software and project specifications, such as the program language and the size of the documentation, in order to attract more individuals to participant in the projects. Compared with the past prediction models, our proposed model can dynamically add the factors, such as number of participants in the initial stage of the project, within the project life cycle and make the adjustment to the prediction model. The proposed model was also verified by using cross validation method. The results show that: 1) The models with the factor “the number of user participation” is more accurate than the model without it. 2) The factors of crowd dimension are more influential on the prediction accuracy than those of software project and owner dimensions. It is suggested that the project owners not only just consider those factors of the software project dimension in the initial stage of the project life cycle but also those factors of crowd and interaction dimensions in the late stage to attract more participants in their projects.展开更多
Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming ...Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming to predict a user's rating for those items which were not rated yet by the user. However, with the increasing number of items and users, thedata is sparse.It is difficult to detectlatent closely relation among the items or users for predicting the user behaviors. In this paper,we enhance the rating prediction approach leading to substantial improvement of prediction accuracy by categorizing according to the genres of movies. Then the probabilities that users are interested in the genres are computed to integrate the prediction of each genre cluster. A novel probabilistic approach based on the sentiment analysis of the user reviews is also proposed to give intuitional explanations of why an item is recommended.To test the novel recommendation approach, a new corpus of user reviews on movies obtained from the Internet Movies Database(IMDB) has been generated. Experimental results show that the proposed framework is effective and achieves a better prediction performance.展开更多
This paper proposes a group synchronization control scheme with prediction in work using haptic media. The scheme adjusts the output timing among multiple terminals and keeps the interactivity high. It outputs positio...This paper proposes a group synchronization control scheme with prediction in work using haptic media. The scheme adjusts the output timing among multiple terminals and keeps the interactivity high. It outputs position information by predicting the future position later than the position included in the last-received information by a fixed amount of time. It also advances the output time of position information at each local terminal by the same amount of time. We deal with two different types of work using haptic media so as to demonstrate the effectiveness of the scheme. We assess the output quality of haptic media for the two types of work subjectively and objectively by Quality of Experience (QoE) assessment. We further clarify the relationship between subjective and objective assessment results.展开更多
In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection ...In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection algorithm is proposed.By the improved collaborative filtering prediction algorithm,the location correlation of users in the wireless network is considered.By incorporating the cooperative grey model prediction algorithm,the time correlation of users motion trajectory is also introduced.Data of users in a normal scenario is simulated and collected for model training and threshold calculating and the outage cell can be effectively detected using the proposed approach.The simulation results demonstrate that the proposed scheme has a higher detection rate for different extents of outage while ensuring the lower communication overhead and false alarm rate than traditional outage detection methods.The detection rate of the proposed approach outperforms the traditional method by around 14%,especially when there are sparse users in the network,and it is able to detect the outage cell with no active users with the help of neighbor cells.展开更多
Mobile bike-sharing services have been prevalently used in many cities as an important urban commuting service and a promising way to build smart cities,especially in the new era of 5G and Internet-of-Things(IoT)envir...Mobile bike-sharing services have been prevalently used in many cities as an important urban commuting service and a promising way to build smart cities,especially in the new era of 5G and Internet-of-Things(IoT)environments.A mobile bike-sharing service makes commuting convenient for people and imparts new vitality to urban transportation systems.In the real world,the problems of no docks or no bikes at bike-sharing stations often arise because of several inevitable reasons such as the uncertainty of bike usage.In addition to pure manual rebalancing,in several works,attempts were made to predict the demand for bikes.In this paper,we devised a bike-sharing service with highly accurate demand prediction using collaborative computing and information fusion.We combined the information of bike demands at different time periods and the locations between stations and proposed a dynamical clustering algorithm for station clustering.We carefully analyzed and discovered the group of features that impact the demand of bikes,from historical bike-sharing records and 5G IoT environment data.We combined the discovered information and proposed an XGBoost-based regression model to predict the rental and return demand.We performed sufficient experiments on two real-world datasets.The results confirm that compared to some existing methods,our method produces superior prediction results and performance and improves the availability of bike-sharing service in 5G IoT environments.展开更多
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
文摘Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.
基金Project(2011AA010101) supported by the National High Technology Research and Development Program of China
文摘To improve the accuracy of real-time public transport information release system, a collaborative prediction model was proposed based on cyber-physical systems architecture. In the model, the total bus travel time was divided into three parts: running time, dwell time and intersection delay time, and the data were divided into three categories of historical data, static data and real-time data. The bus arrival time was obtained by fusion computing the real-time data in perception layer together with historical data and static data in collaborative layer. The validity of the collaborative model was verified by the data of a typical urban bus line in Shanghai, and 1538 sets of data were collected and analyzed from three different perspectives. By comparing the experimental results with the actual results, it is shown that the experimental results are with higher prediction accuracy, and the collaborative prediction model adopted is able to meet the demand for bus arrival prediction.
基金This work is supported by National Natural Science Foundation of China(No.61672133)Sichuan Science and Technology Program(No.2019YFG0535)the 111 Project(No.B17008).
文摘Recommender systems are rapidly transforming the digital world into intelligent information hubs.The valuable context information associated with the users’prior transactions has played a vital role in determining the user preferences for items or rating prediction.It has been a hot research topic in collaborative filtering-based recommender systems for the last two decades.This paper presents a novel Context Based Rating Prediction(CBRP)model with a unique similarity scoring estimation method.The proposed algorithm computes a context score for each candidate user to construct a similarity pool for the given subject user-item pair and intuitively choose the highly influential users to forecast the item ratings.The context scoring strategy has an inherent capability to incorporate multiple conditional factors to filter down the most relevant recommendations.Compared with traditional similarity estimation methods,CBRP makes it possible for the full use of neighboring collaborators’choice on various conditions.We conduct experiments on three publicly available datasets to evaluate our proposed method with random user-item pairs and got considerable improvement in prediction accuracy over the standard evaluation measures.Also,we evaluate prediction accuracy for every user-item pair in the system and the results show that our proposed framework has outperformed existing methods.
文摘Many online platforms providing crowd with opportunities to participate in software development projects have been existed for a while. Meanwhile, many enterprises are using crowd source to collaboratively develop their software via these platforms in recent years. However, some software development projects in these platforms hardly attract users to join. Therefore, these project owners need a way to effectively predict the number of participants in their projects and accordingly well plan their software and project specifications, such as the program language and the size of the documentation, in order to attract more individuals to participant in the projects. Compared with the past prediction models, our proposed model can dynamically add the factors, such as number of participants in the initial stage of the project, within the project life cycle and make the adjustment to the prediction model. The proposed model was also verified by using cross validation method. The results show that: 1) The models with the factor “the number of user participation” is more accurate than the model without it. 2) The factors of crowd dimension are more influential on the prediction accuracy than those of software project and owner dimensions. It is suggested that the project owners not only just consider those factors of the software project dimension in the initial stage of the project life cycle but also those factors of crowd and interaction dimensions in the late stage to attract more participants in their projects.
基金supported in part by National Science Foundation of China under Grants No.61303105 and 61402304the Humanity&Social Science general project of Ministry of Education under Grants No.14YJAZH046+2 种基金the Beijing Natural Science Foundation under Grants No.4154065the Beijing Educational Committee Science and Technology Development Planned under Grants No.KM201410028017Academic Degree Graduate Courses group projects
文摘Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming to predict a user's rating for those items which were not rated yet by the user. However, with the increasing number of items and users, thedata is sparse.It is difficult to detectlatent closely relation among the items or users for predicting the user behaviors. In this paper,we enhance the rating prediction approach leading to substantial improvement of prediction accuracy by categorizing according to the genres of movies. Then the probabilities that users are interested in the genres are computed to integrate the prediction of each genre cluster. A novel probabilistic approach based on the sentiment analysis of the user reviews is also proposed to give intuitional explanations of why an item is recommended.To test the novel recommendation approach, a new corpus of user reviews on movies obtained from the Internet Movies Database(IMDB) has been generated. Experimental results show that the proposed framework is effective and achieves a better prediction performance.
文摘This paper proposes a group synchronization control scheme with prediction in work using haptic media. The scheme adjusts the output timing among multiple terminals and keeps the interactivity high. It outputs position information by predicting the future position later than the position included in the last-received information by a fixed amount of time. It also advances the output time of position information at each local terminal by the same amount of time. We deal with two different types of work using haptic media so as to demonstrate the effectiveness of the scheme. We assess the output quality of haptic media for the two types of work subjectively and objectively by Quality of Experience (QoE) assessment. We further clarify the relationship between subjective and objective assessment results.
基金The National Natural Science Foundation of China(No.61571123,61521061)the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2018A03,2019A03)+1 种基金the National Major Science and Technology Project(No.2017ZX03001002-004)the 333 Program of Jiangsu Province(No.BRA2017366)
文摘In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection algorithm is proposed.By the improved collaborative filtering prediction algorithm,the location correlation of users in the wireless network is considered.By incorporating the cooperative grey model prediction algorithm,the time correlation of users motion trajectory is also introduced.Data of users in a normal scenario is simulated and collected for model training and threshold calculating and the outage cell can be effectively detected using the proposed approach.The simulation results demonstrate that the proposed scheme has a higher detection rate for different extents of outage while ensuring the lower communication overhead and false alarm rate than traditional outage detection methods.The detection rate of the proposed approach outperforms the traditional method by around 14%,especially when there are sparse users in the network,and it is able to detect the outage cell with no active users with the help of neighbor cells.
基金supported by the National Natural Science Foundation of China (No. 61902236)Fundamental Research Funds for the Central Universities (No. JB210311).
文摘Mobile bike-sharing services have been prevalently used in many cities as an important urban commuting service and a promising way to build smart cities,especially in the new era of 5G and Internet-of-Things(IoT)environments.A mobile bike-sharing service makes commuting convenient for people and imparts new vitality to urban transportation systems.In the real world,the problems of no docks or no bikes at bike-sharing stations often arise because of several inevitable reasons such as the uncertainty of bike usage.In addition to pure manual rebalancing,in several works,attempts were made to predict the demand for bikes.In this paper,we devised a bike-sharing service with highly accurate demand prediction using collaborative computing and information fusion.We combined the information of bike demands at different time periods and the locations between stations and proposed a dynamical clustering algorithm for station clustering.We carefully analyzed and discovered the group of features that impact the demand of bikes,from historical bike-sharing records and 5G IoT environment data.We combined the discovered information and proposed an XGBoost-based regression model to predict the rental and return demand.We performed sufficient experiments on two real-world datasets.The results confirm that compared to some existing methods,our method produces superior prediction results and performance and improves the availability of bike-sharing service in 5G IoT environments.