As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digi...As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.展开更多
Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping appro...Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.展开更多
Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to...Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.展开更多
Low earth orbit(LEO) satellite communications can provide ubiquitous and reliable services,making it an essential part of the Internet of Everything network. Beam hopping(BH) is an emerging technology for effectively ...Low earth orbit(LEO) satellite communications can provide ubiquitous and reliable services,making it an essential part of the Internet of Everything network. Beam hopping(BH) is an emerging technology for effectively addressing the issue of low resource utilization caused by the non-uniform spatio-temporal distribution of traffic demands. However, how to allocate multi-dimensional resources in a timely and efficient way for the highly dynamic LEO satellite systems remains a challenge. This paper proposes a joint beam scheduling and power optimization beam hopping(JBSPO-BH) algorithm considering the differences in the geographic distribution of sink nodes. The JBSPO-BH algorithm decouples the original problem into two sub-problems. The beam scheduling problem is modelled as a potential game,and the Nash equilibrium(NE) point is obtained as the beam scheduling strategy. Moreover, the penalty function interior point method is applied to optimize the power allocation. Simulation results show that the JBSPO-BH algorithm has low time complexity and fast convergence and achieves better performance both in throughput and fairness. Compared with greedybased BH, greedy-based BH with the power optimization, round-robin BH, Max-SINR BH and satellite resource allocation algorithm, the throughput of the proposed algorithm is improved by 44.99%, 20.79%,156.06%, 15.39% and 8.17%, respectively.展开更多
Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can b...Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression.However,ME can be unreliable in numerous applications due to its sluggish response to moisture,thus sacrificing the value of fast energy harvesting and highly accurate information representation.Here,by constructing a moisture-electric-moisture-sensitive(ME-MS)heterostructure,we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO,which modulates the heterostructure built-in interfacial potential,enables quick response(0.435 s),an unprecedented ultra-fast response rate of 972.4 mV s^(−1),and a durable electrical signal output for 8 h without any attenuation.Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator,which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.展开更多
合金纳米团簇可以充分利用多种金属的协同效应来实现材料的多功能特性,因而备受关注.本文利用改进的Basin-Hopping Monte Carlo算法研究了不同尺寸和不同比例下的Fe-Pt二元合金团簇的结构稳定性.为证明初始结构相关性,引入了相似函数来...合金纳米团簇可以充分利用多种金属的协同效应来实现材料的多功能特性,因而备受关注.本文利用改进的Basin-Hopping Monte Carlo算法研究了不同尺寸和不同比例下的Fe-Pt二元合金团簇的结构稳定性.为证明初始结构相关性,引入了相似函数来分析合金团簇稳定结构与其对应的单金属团簇结构之间的相似性,并分析了Fe-Pt合金团簇在稳定结构下的元素分布.研究结果表明:对于N≤24的Fe-Pt含金团簇,其结构并没有随原子数的增长呈现出明显的形状变化.但是就原子分布而言,对于相同尺寸下不同比例的原子结构,Fe元素趋向于分布在外层,而Pt元素更趋向于分布在内层;对于相同比例不同尺寸的原子结构也得到了同样的结论,并且在Fe原子比例越大的情况下,这种趋向的分布越明显.此外,通过计算合金团簇与单一金属团簇的结构相似函数,发现N≤24的Fe-Pt合金团簇在吸收Fe单金属和Pt单金属基态结构的基础上,随着元素比例的变化,发生了不同于单金属基态结构的变化,并且不同比例结构差异较大.最后,通过计算Fe-Pt合金团簇能量的二阶有限差分值,在Fe-Pt表现出分离结构状态时找到了相对稳定度最好的稳定结构.展开更多
A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused o...A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused on.It is fabricated in a 0.18 μm mixed-signal CMOS (complementary metal-oxide-semiconductor transistor) process.The power dissipation of VCO is low and a stable performance is gained.The measured phase noise of VCO at 2.4 GHz is less than -114.32 dBc/Hz.The structure of the DMP is optimized and a novel D-latch integrated with "OR" logic gate is used.The measured results show that the chip can work well under a 1.8 V power supply.The power dissipation of the core part in a dual modulus prescaler is only 5.76 mW.An RMS jitter of 2 ps is measured on the output signal at 118.3 MHz.It is less than 0.02% of the clock period.展开更多
A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed, and its kinematic characteris- tics were analyzed. A series of experiments were conducted to observe locust morphology and jumpi...A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed, and its kinematic characteris- tics were analyzed. A series of experiments were conducted to observe locust morphology and jumping process. According to classic mechanics, the jumping process analysis was conducted to build the relationship of the locust jumping parameters. The take-offphase was divided into four stages in detail. Based on the biological observation and kinematics analysis, a mechanical model was proposed to simulate locust jumping. The forces of the flexible-rigid hopping mechanism at each stage were ana- lyzed. The kinematic analysis using pseudo-rigid-body model was described by D-H method. It is confirmed that the proposed bionic mechanism has the similar performance as the locust hind leg in hopping. Moreover, the jumping angle which decides the jumping process was discussed, and its relation with other parameters was established. A calculation case analysis corroborated the method. The results of this paper show that the proposed bionic mechanism which is inspired by the locust hind limb has an excellent kinematics performance, which can provide a foundation for design and motion planning of the hopping robot.展开更多
One dimensional periodic hopping model is useful to understand the motion of microscopic particles in thermal noise environment. In this research, by formal calculation and based on detailed balance, the explicit expr...One dimensional periodic hopping model is useful to understand the motion of microscopic particles in thermal noise environment. In this research, by formal calculation and based on detailed balance, the explicit expressions of the limits of mean velocity and diffusion constant of this model as the number of internal mechanochemical sates tend to infinity are obtained.These results will be helpful to understand the limit of the one dimensional hopping model.At the same time, the work can be used to get more useful results in continuous form from the corresponding ones obtained by discrete models.展开更多
End hopping is an active and effective technology for defending against adversaries in the network warfare.Synchronization is a key technology of end hopping.However,the common synchronization methods are insufficient...End hopping is an active and effective technology for defending against adversaries in the network warfare.Synchronization is a key technology of end hopping.However,the common synchronization methods are insufficient for end hopping.Based on timestamp synchronization,this paper proposes a novel method of Distributed Timestamp Synchronization(DTS)to improve the capacity of synchronization.DTS uses a list of timestamp servers which are located all over the Internet to synchronize timestamp,and a list of clock offsets to adjust the synchronized timestamp.DTS can overcome the main deficiencies(request overwhelming and boundary failure)of timestamp synchronization.Experiments show that DTS is a feasible synchronization technology for end hopping.展开更多
Compressive sensing (CS) creates a new framework of signal reconstruction or approximation from a smaller set of incoherent projection compared with the traditional Nyquist-rate sampling theory. Recently, it has been ...Compressive sensing (CS) creates a new framework of signal reconstruction or approximation from a smaller set of incoherent projection compared with the traditional Nyquist-rate sampling theory. Recently, it has been shown that CS can solve some signal processing problems given incoherent measurements without ever reconstructing the signals. Moreover, the number of measurements necessary for most compressive signal processing application such as detection, estimation and classification is lower than that necessary for signal reconstruction. Based on CS, this paper presents a novel identification algorithm of frequency hopping (FH) signals. Given the hop interval, the FH signals can be identified and the hopping frequencies can be estimated with a tiny number of measurements. Simulation results demonstrate that the method is effective and efficient.展开更多
This paper deals with the follower jamming(FJ)resistance for the frequency hopping(FH)communication system over additive white Gaussian noise(AWGN)channel.Conventional FH systems are susceptible to be jammed by FJ,and...This paper deals with the follower jamming(FJ)resistance for the frequency hopping(FH)communication system over additive white Gaussian noise(AWGN)channel.Conventional FH systems are susceptible to be jammed by FJ,and multi-pattern frequency hopping(MPFH)has good resistance to FJ.To further improve the FJ rejection capability of MPFH,we propose a wide gap multi-pattern frequency hopping(WGMPFH)scheme.WGMPFH uses channels to represent messages,and the data channel and complementary channel are hopping on orthogonal frequency slots according to wide gap FH patterns.The transmitted signal lures FJ to aim at the data channel and the complementary channel is away from FJ by adopting wide gap frequency patterns.FJ does not affect the complementary channel but increases the signal energy in the data channel,thus the effect of FJ is reduced.Its bit error rate(BER)is derived under FJ and the effects of three FJ parameters(tracking success probability,jamming duration ratio and jamming bandwidth ratio)on the BER performance of WGMPFH are investigated versus the co nventional FH/BFSK and MPFH system.Numerical and simulation results show that when under the worst-case FJ,the proposed WGMPFH outperforms the MPFH by about 1-3 dB and outperforms the conventional FH/BFSK by more than 4 dB.The proposed WGMPFH shows superior jamming rejection performance under FJ especially in severe signal-to-jamming ratio(SJR).展开更多
We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance ...We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics.There are two obvious transition platforms within the critical temperature regimes for the experimental conductance data,which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gm peak in Vg1 and valley in Vg2. The crossover temperatures of the electron hopping behaviors are analytically determined by the temperature-dependent conductance at the gate voltages Vg1 and Vg2. This finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.展开更多
Beam hopping technology provides a foundation for the flexible allocation and efficient utilization of satellite resources,which is considered as a key technology for the next generation of high throughput satellite s...Beam hopping technology provides a foundation for the flexible allocation and efficient utilization of satellite resources,which is considered as a key technology for the next generation of high throughput satellite systems.To alleviate the contradiction between resource utilization and co-frequency interference in beam hopping technology,this paper firstly studies dynamic clustering to balance traffic between clusters and proposes cluster hopping pool optimization method to avoid inter-cluster interference.Then based on the optimization results,a novel joint beam hopping and precoding algorithm is provided to combine resource allocation and intra-cluster interference suppression,which can make efficient utilization of system resources and achieve reliable and near-optimal transmission capacity.The simulation results show that,compared with traditional methods,the proposed algorithms can dynamically adjust to balance demand traffic between clusters and meet the service requirements of each beam,also eliminate the co-channel interference to improve the performance of satellite network.展开更多
The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length t...The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length to intra-cavity length, and initial gains of the two hopping modes, When external cavity length equals an integral multiple of intracavity length, there is almost no mode hopping. However, if the external cavity length does not equal an integral multiple of intra-cavity length, mode hopping occurs. The ratio of external cavity length to intra-cavity length determines the position of two-mode hopping, The initial gains of the two hopping modes determine the corresponding peak values and oscillating periods of them in the intensity modulation curves.展开更多
Ferromagnetic semiconductor Ga_(1–x)Mn_(x)As_(1–y)P_(y) thin films go through a metal–insulator transition at low temperature where electrical conduction becomes driven by hopping of charge carriers.In this regime,...Ferromagnetic semiconductor Ga_(1–x)Mn_(x)As_(1–y)P_(y) thin films go through a metal–insulator transition at low temperature where electrical conduction becomes driven by hopping of charge carriers.In this regime,we report a colossal negative magnetoresistance(CNMR)coexisting with a saturated magnetic moment,unlike in the traditional magnetic semiconductor Ga_(1–x)Mn_(x)As.By analyzing the temperature dependence of the resistivity at fixed magnetic field,we demonstrate that the CNMR can be consistently described by the field dependence of the localization length,which relates to a field dependent mobility edge.This dependence is likely due to the random environment of Mn atoms in Ga_(1-x)Mn_(x)As_(1-y)P_(y) which causes a random spatial distribution of the mobility that is suppressed by an increasing magnetic field.展开更多
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grants 62131005, 62071096in part by the Fundamental Research Funds for the Central Universities under Grant 2242022k60006+1 种基金in part by the National NSFC under Grant U19B2014in part by the Natural Science Foundation of Sichuan under Grant 2022NSFSC0495
文摘As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)the National Natural Science Foundation of China(Grant Nos.11920101004,11934002,and 92365208)+1 种基金Science and Technology Major Project of Shanxi(Grant No.202101030201022)Space Application System of China Manned Space Program.
文摘Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.
文摘Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.
基金supported by the National Key Research and Development Program of China 2021YFB2900504, 2020YFB1807900。
文摘Low earth orbit(LEO) satellite communications can provide ubiquitous and reliable services,making it an essential part of the Internet of Everything network. Beam hopping(BH) is an emerging technology for effectively addressing the issue of low resource utilization caused by the non-uniform spatio-temporal distribution of traffic demands. However, how to allocate multi-dimensional resources in a timely and efficient way for the highly dynamic LEO satellite systems remains a challenge. This paper proposes a joint beam scheduling and power optimization beam hopping(JBSPO-BH) algorithm considering the differences in the geographic distribution of sink nodes. The JBSPO-BH algorithm decouples the original problem into two sub-problems. The beam scheduling problem is modelled as a potential game,and the Nash equilibrium(NE) point is obtained as the beam scheduling strategy. Moreover, the penalty function interior point method is applied to optimize the power allocation. Simulation results show that the JBSPO-BH algorithm has low time complexity and fast convergence and achieves better performance both in throughput and fairness. Compared with greedybased BH, greedy-based BH with the power optimization, round-robin BH, Max-SINR BH and satellite resource allocation algorithm, the throughput of the proposed algorithm is improved by 44.99%, 20.79%,156.06%, 15.39% and 8.17%, respectively.
基金the Natural Science Foundation of Beijing Municipality(2222075)National Natural Science Foundation of China(22279010,21671020,51673026)Analysis&Testing Center,Beijing Institute of Technology.
文摘Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression.However,ME can be unreliable in numerous applications due to its sluggish response to moisture,thus sacrificing the value of fast energy harvesting and highly accurate information representation.Here,by constructing a moisture-electric-moisture-sensitive(ME-MS)heterostructure,we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO,which modulates the heterostructure built-in interfacial potential,enables quick response(0.435 s),an unprecedented ultra-fast response rate of 972.4 mV s^(−1),and a durable electrical signal output for 8 h without any attenuation.Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator,which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.
文摘合金纳米团簇可以充分利用多种金属的协同效应来实现材料的多功能特性,因而备受关注.本文利用改进的Basin-Hopping Monte Carlo算法研究了不同尺寸和不同比例下的Fe-Pt二元合金团簇的结构稳定性.为证明初始结构相关性,引入了相似函数来分析合金团簇稳定结构与其对应的单金属团簇结构之间的相似性,并分析了Fe-Pt合金团簇在稳定结构下的元素分布.研究结果表明:对于N≤24的Fe-Pt含金团簇,其结构并没有随原子数的增长呈现出明显的形状变化.但是就原子分布而言,对于相同尺寸下不同比例的原子结构,Fe元素趋向于分布在外层,而Pt元素更趋向于分布在内层;对于相同比例不同尺寸的原子结构也得到了同样的结论,并且在Fe原子比例越大的情况下,这种趋向的分布越明显.此外,通过计算合金团簇与单一金属团簇的结构相似函数,发现N≤24的Fe-Pt合金团簇在吸收Fe单金属和Pt单金属基态结构的基础上,随着元素比例的变化,发生了不同于单金属基态结构的变化,并且不同比例结构差异较大.最后,通过计算Fe-Pt合金团簇能量的二阶有限差分值,在Fe-Pt表现出分离结构状态时找到了相对稳定度最好的稳定结构.
文摘A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused on.It is fabricated in a 0.18 μm mixed-signal CMOS (complementary metal-oxide-semiconductor transistor) process.The power dissipation of VCO is low and a stable performance is gained.The measured phase noise of VCO at 2.4 GHz is less than -114.32 dBc/Hz.The structure of the DMP is optimized and a novel D-latch integrated with "OR" logic gate is used.The measured results show that the chip can work well under a 1.8 V power supply.The power dissipation of the core part in a dual modulus prescaler is only 5.76 mW.An RMS jitter of 2 ps is measured on the output signal at 118.3 MHz.It is less than 0.02% of the clock period.
基金This work is financially supported by the National Natural Science Foundation of China (Grant No. 51075014).
文摘A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed, and its kinematic characteris- tics were analyzed. A series of experiments were conducted to observe locust morphology and jumping process. According to classic mechanics, the jumping process analysis was conducted to build the relationship of the locust jumping parameters. The take-offphase was divided into four stages in detail. Based on the biological observation and kinematics analysis, a mechanical model was proposed to simulate locust jumping. The forces of the flexible-rigid hopping mechanism at each stage were ana- lyzed. The kinematic analysis using pseudo-rigid-body model was described by D-H method. It is confirmed that the proposed bionic mechanism has the similar performance as the locust hind leg in hopping. Moreover, the jumping angle which decides the jumping process was discussed, and its relation with other parameters was established. A calculation case analysis corroborated the method. The results of this paper show that the proposed bionic mechanism which is inspired by the locust hind limb has an excellent kinematics performance, which can provide a foundation for design and motion planning of the hopping robot.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10701029) and the Shanghai Key Laboratory for Contemporary Applied Mathematics (No.SGST09DZ2272900).
文摘One dimensional periodic hopping model is useful to understand the motion of microscopic particles in thermal noise environment. In this research, by formal calculation and based on detailed balance, the explicit expressions of the limits of mean velocity and diffusion constant of this model as the number of internal mechanochemical sates tend to infinity are obtained.These results will be helpful to understand the limit of the one dimensional hopping model.At the same time, the work can be used to get more useful results in continuous form from the corresponding ones obtained by discrete models.
基金National Natural Science Foundation of China under Grant No. 60973141Natural Science Foundation of Tianjin under Grant No. 09JCYBJ00300Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20100031110030
文摘End hopping is an active and effective technology for defending against adversaries in the network warfare.Synchronization is a key technology of end hopping.However,the common synchronization methods are insufficient for end hopping.Based on timestamp synchronization,this paper proposes a novel method of Distributed Timestamp Synchronization(DTS)to improve the capacity of synchronization.DTS uses a list of timestamp servers which are located all over the Internet to synchronize timestamp,and a list of clock offsets to adjust the synchronized timestamp.DTS can overcome the main deficiencies(request overwhelming and boundary failure)of timestamp synchronization.Experiments show that DTS is a feasible synchronization technology for end hopping.
文摘Compressive sensing (CS) creates a new framework of signal reconstruction or approximation from a smaller set of incoherent projection compared with the traditional Nyquist-rate sampling theory. Recently, it has been shown that CS can solve some signal processing problems given incoherent measurements without ever reconstructing the signals. Moreover, the number of measurements necessary for most compressive signal processing application such as detection, estimation and classification is lower than that necessary for signal reconstruction. Based on CS, this paper presents a novel identification algorithm of frequency hopping (FH) signals. Given the hop interval, the FH signals can be identified and the hopping frequencies can be estimated with a tiny number of measurements. Simulation results demonstrate that the method is effective and efficient.
基金The National Natural Science Foundation of China(No.61531009,No.61471108)The National Major Projects of China(No.2016ZX03001009)。
文摘This paper deals with the follower jamming(FJ)resistance for the frequency hopping(FH)communication system over additive white Gaussian noise(AWGN)channel.Conventional FH systems are susceptible to be jammed by FJ,and multi-pattern frequency hopping(MPFH)has good resistance to FJ.To further improve the FJ rejection capability of MPFH,we propose a wide gap multi-pattern frequency hopping(WGMPFH)scheme.WGMPFH uses channels to represent messages,and the data channel and complementary channel are hopping on orthogonal frequency slots according to wide gap FH patterns.The transmitted signal lures FJ to aim at the data channel and the complementary channel is away from FJ by adopting wide gap frequency patterns.FJ does not affect the complementary channel but increases the signal energy in the data channel,thus the effect of FJ is reduced.Its bit error rate(BER)is derived under FJ and the effects of three FJ parameters(tracking success probability,jamming duration ratio and jamming bandwidth ratio)on the BER performance of WGMPFH are investigated versus the co nventional FH/BFSK and MPFH system.Numerical and simulation results show that when under the worst-case FJ,the proposed WGMPFH outperforms the MPFH by about 1-3 dB and outperforms the conventional FH/BFSK by more than 4 dB.The proposed WGMPFH shows superior jamming rejection performance under FJ especially in severe signal-to-jamming ratio(SJR).
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0200503)the National Natural Science Foundation of China(Grant No.61327813)
文摘We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics.There are two obvious transition platforms within the critical temperature regimes for the experimental conductance data,which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gm peak in Vg1 and valley in Vg2. The crossover temperatures of the electron hopping behaviors are analytically determined by the temperature-dependent conductance at the gate voltages Vg1 and Vg2. This finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.
基金National Natural Science Foundation of China (No. 61901230, 61801445 and 91738201)Key pre-research project for civil space technology: Research project on VHTS communication technology (No. B0106)。
文摘Beam hopping technology provides a foundation for the flexible allocation and efficient utilization of satellite resources,which is considered as a key technology for the next generation of high throughput satellite systems.To alleviate the contradiction between resource utilization and co-frequency interference in beam hopping technology,this paper firstly studies dynamic clustering to balance traffic between clusters and proposes cluster hopping pool optimization method to avoid inter-cluster interference.Then based on the optimization results,a novel joint beam hopping and precoding algorithm is provided to combine resource allocation and intra-cluster interference suppression,which can make efficient utilization of system resources and achieve reliable and near-optimal transmission capacity.The simulation results show that,compared with traditional methods,the proposed algorithms can dynamically adjust to balance demand traffic between clusters and meet the service requirements of each beam,also eliminate the co-channel interference to improve the performance of satellite network.
文摘针对无线传感网络中传统DV-Hop(Distance Vector Hop)定位算法节点分布不均匀导致定位误差较大的问题,提出了非均匀网络中半径可调的ARDV-Hop(Adjustable Radius DV-Hop in Non-uniform Networks)定位算法。该算法通过半径可调的方式对节点间的跳数进行细化,用细化后呈小数级的跳数代替传统的整数级跳数,并建立了数据能量消耗模型,优化了网络传输性能。ARDV-Hop算法还针对节点分布不均匀的区域提出跳距优化算法:在节点密度大的区域,采用余弦定理优化跳距;密度小的区域,采用最小均方误差(Least Mean Square,LMS)来修正跳距。仿真实验表明,在同等网络环境下,与传统DV-Hop算法、GDV-Hop算法和WOA-DV-Hop算法相比,ARDV-Hop算法能更有效地降低定位误差.
基金Project supported by the National Natural Science Foundation of China (Grant No 60438010).
文摘The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length to intra-cavity length, and initial gains of the two hopping modes, When external cavity length equals an integral multiple of intracavity length, there is almost no mode hopping. However, if the external cavity length does not equal an integral multiple of intra-cavity length, mode hopping occurs. The ratio of external cavity length to intra-cavity length determines the position of two-mode hopping, The initial gains of the two hopping modes determine the corresponding peak values and oscillating periods of them in the intensity modulation curves.
基金This work was supported by the National Science Foundation Grant No.DMR 1905277.
文摘Ferromagnetic semiconductor Ga_(1–x)Mn_(x)As_(1–y)P_(y) thin films go through a metal–insulator transition at low temperature where electrical conduction becomes driven by hopping of charge carriers.In this regime,we report a colossal negative magnetoresistance(CNMR)coexisting with a saturated magnetic moment,unlike in the traditional magnetic semiconductor Ga_(1–x)Mn_(x)As.By analyzing the temperature dependence of the resistivity at fixed magnetic field,we demonstrate that the CNMR can be consistently described by the field dependence of the localization length,which relates to a field dependent mobility edge.This dependence is likely due to the random environment of Mn atoms in Ga_(1-x)Mn_(x)As_(1-y)P_(y) which causes a random spatial distribution of the mobility that is suppressed by an increasing magnetic field.