In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorp...In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied.In this study,the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin,China.The results show that the characteristics of pore structure will affect the methane adsorption characteristics.The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores.The groove space inside the pore will change the density distribution of methane molecules in the pore,greatly improve the adsorption capacity of the pore,and increase the pressure sensitivity of the adsorption process.Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size,all pores have the strongest methane adsorption capacity when the pore size is about 2 nm.In addition,the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics.The pore adsorption capacity first increases and then decreases with the increase of pressure,and increases with the increase of temperature.In the early stage of thermal evolution,pore adsorption capacity is strong and pressure sensitivity is weak;while in the late stage,it is on the contrary.展开更多
A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimiz...A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimization model of the multi-period lIEN is first established and then solved to target the retrofit, aiming to minimizing the total annual cost and total annual CO2 emissions. The obtained Pareto front represents series of retrofit targets under different emission limitations, from which the most desirable one can be selected. The matching of the existing and the required heat exchangers is further implemented to finalize the retrofit, which will meet the practical retrofit requirements and matching restrictions. The application of the proposed procedure is illustrated through a case study of a HEN in a vacuum gas oil hydro-treating unit.展开更多
Temperate and high-latitude forests are carbon sinks and play pivotal roles in offsetting greenhouse gas emissions of CO2.However,uncertainty still exists for subtropical forests,especially in monsoon-prevalent easter...Temperate and high-latitude forests are carbon sinks and play pivotal roles in offsetting greenhouse gas emissions of CO2.However,uncertainty still exists for subtropical forests,especially in monsoon-prevalent eastern Asia.Earlier studies have depended on remote sensing,ecosystem modeling,carbon fluxes,or single period forest surveys to estimate carbon sequestration capacities,and the results vary significantly.This study was designed to utilize multi-period forest survey data to explore spatial-dynamics of biomass storage in subtropical forests of China.Jiangxi province,a region with over 60%subtropical forest cover,was selected as the case study site and is located in central east China.Based on forest inventory data 1984-2013,and the stock-difference and biomass expansion factor methods,the carbon storage and density,of arboreal forests,economic forests,bamboo forests,woodlands and shrubberies were estimated.The results show that carbon storage increased from 159.1 Tg C in 1988 to 276.1 TgC in 2013,making up 3.1-3.8%of carbon stored throughout China.Among the four types of forests,the amount of carbon stored was as follows:arboreal forest>economic forest>bamboo forest>woodland and shrubbery.Arboreal forests accounted for 64.0-79.4%of the total.Forest carbon density increased from 21.2 Mg C ha-1 in 1984 to26.2 Mg C ha-1 in 2013,equal to 61.2-70.2%of the average carbon density of China’s forests in the same period.Forest carbon storage in Jiangxi will reach 355.5 Tg C and 535.8 Tg C in 2020 and 2030,respectively,and forest carbon density is predicted to be 31.9 Mg C ha-1and 46.4 Mg C ha-1,respectively.As one of the few studies using multi-period data tracking biomass dynamics in Jiangxi province,the findings of this study may be used as a reference for other research.Using Jiangxi as a case study underlies the fact that subtropical forests in China have great carbon sequestration potential and have fundamental significance to offset global environmental change effects.展开更多
Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To so...Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.展开更多
In intercontinental trade and economics goods are bought from a global supplier.On occasion,the expected lot may include a fraction of defective items.These imperfect items still have worth and can be sold to customer...In intercontinental trade and economics goods are bought from a global supplier.On occasion,the expected lot may include a fraction of defective items.These imperfect items still have worth and can be sold to customers after repair.It is cost-effective and sustainable to rework such items in nearby repair workshops rather than return them.The reworked items can be returned from the workshop to the buyer when shortages are equal to the quantity of imperfect items.In the meantime,the supplier correspondingly deals a multi-period delay-in-payments strategy with purchaser.The entire profit has been maximized with paybacks for interim financing.This study aims to develop a synergic inventory model to get the most profit by making an allowance for reworking,multi-period delay-in-payments policy,and shortages.The findings of the proposed model augment inventory management performance by monitoring cycle time as well as fraction of phase with optimistic inventory for a supply chain.The results demonstrate that profit is smaller if the permitted period given by supplier to buyer is equal to or greater than the cycle time,and profit is greater if the permitted period is smaller than the cycle time.The algebraic method is engaged to make a closed system optimum solution.The mathematical experiment of this study is constructed to provide management insights and tangible practices.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.41772141,41972171)the Natural Science Foundation of Jiangsu Province(BK20181362),the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied.In this study,the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin,China.The results show that the characteristics of pore structure will affect the methane adsorption characteristics.The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores.The groove space inside the pore will change the density distribution of methane molecules in the pore,greatly improve the adsorption capacity of the pore,and increase the pressure sensitivity of the adsorption process.Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size,all pores have the strongest methane adsorption capacity when the pore size is about 2 nm.In addition,the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics.The pore adsorption capacity first increases and then decreases with the increase of pressure,and increases with the increase of temperature.In the early stage of thermal evolution,pore adsorption capacity is strong and pressure sensitivity is weak;while in the late stage,it is on the contrary.
基金Supported by the National Natural Science Foundation of China(21376188,21676211)
文摘A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimization model of the multi-period lIEN is first established and then solved to target the retrofit, aiming to minimizing the total annual cost and total annual CO2 emissions. The obtained Pareto front represents series of retrofit targets under different emission limitations, from which the most desirable one can be selected. The matching of the existing and the required heat exchangers is further implemented to finalize the retrofit, which will meet the practical retrofit requirements and matching restrictions. The application of the proposed procedure is illustrated through a case study of a HEN in a vacuum gas oil hydro-treating unit.
基金The work was supported by the National Natural Science Foundation of China(Grant Number:41463005)Key research and development program of Jiangxi province(Grant Number:20181ACG70021).
文摘Temperate and high-latitude forests are carbon sinks and play pivotal roles in offsetting greenhouse gas emissions of CO2.However,uncertainty still exists for subtropical forests,especially in monsoon-prevalent eastern Asia.Earlier studies have depended on remote sensing,ecosystem modeling,carbon fluxes,or single period forest surveys to estimate carbon sequestration capacities,and the results vary significantly.This study was designed to utilize multi-period forest survey data to explore spatial-dynamics of biomass storage in subtropical forests of China.Jiangxi province,a region with over 60%subtropical forest cover,was selected as the case study site and is located in central east China.Based on forest inventory data 1984-2013,and the stock-difference and biomass expansion factor methods,the carbon storage and density,of arboreal forests,economic forests,bamboo forests,woodlands and shrubberies were estimated.The results show that carbon storage increased from 159.1 Tg C in 1988 to 276.1 TgC in 2013,making up 3.1-3.8%of carbon stored throughout China.Among the four types of forests,the amount of carbon stored was as follows:arboreal forest>economic forest>bamboo forest>woodland and shrubbery.Arboreal forests accounted for 64.0-79.4%of the total.Forest carbon density increased from 21.2 Mg C ha-1 in 1984 to26.2 Mg C ha-1 in 2013,equal to 61.2-70.2%of the average carbon density of China’s forests in the same period.Forest carbon storage in Jiangxi will reach 355.5 Tg C and 535.8 Tg C in 2020 and 2030,respectively,and forest carbon density is predicted to be 31.9 Mg C ha-1and 46.4 Mg C ha-1,respectively.As one of the few studies using multi-period data tracking biomass dynamics in Jiangxi province,the findings of this study may be used as a reference for other research.Using Jiangxi as a case study underlies the fact that subtropical forests in China have great carbon sequestration potential and have fundamental significance to offset global environmental change effects.
基金supported by the National Natural Science Foundation of China(90305026).
文摘Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.
文摘In intercontinental trade and economics goods are bought from a global supplier.On occasion,the expected lot may include a fraction of defective items.These imperfect items still have worth and can be sold to customers after repair.It is cost-effective and sustainable to rework such items in nearby repair workshops rather than return them.The reworked items can be returned from the workshop to the buyer when shortages are equal to the quantity of imperfect items.In the meantime,the supplier correspondingly deals a multi-period delay-in-payments strategy with purchaser.The entire profit has been maximized with paybacks for interim financing.This study aims to develop a synergic inventory model to get the most profit by making an allowance for reworking,multi-period delay-in-payments policy,and shortages.The findings of the proposed model augment inventory management performance by monitoring cycle time as well as fraction of phase with optimistic inventory for a supply chain.The results demonstrate that profit is smaller if the permitted period given by supplier to buyer is equal to or greater than the cycle time,and profit is greater if the permitted period is smaller than the cycle time.The algebraic method is engaged to make a closed system optimum solution.The mathematical experiment of this study is constructed to provide management insights and tangible practices.