期刊文献+
共找到212篇文章
< 1 2 11 >
每页显示 20 50 100
Recurrent Support and Relevance Vector Machines Based Model with Application to Forecasting Volatility of Financial Returns 被引量:3
1
作者 Altaf Hossain Mohammed Nasser 《Journal of Intelligent Learning Systems and Applications》 2011年第4期230-241,共12页
In the recent years, the use of GARCH type (especially, ARMA-GARCH) models and computational-intelligence-based techniques—Support Vector Machine (SVM) and Relevance Vector Machine (RVM) have been successfully used f... In the recent years, the use of GARCH type (especially, ARMA-GARCH) models and computational-intelligence-based techniques—Support Vector Machine (SVM) and Relevance Vector Machine (RVM) have been successfully used for financial forecasting. This paper deals with the application of ARMA-GARCH, recurrent SVM (RSVM) and recurrent RVM (RRVM) in volatility forecasting. Based on RSVM and RRVM, two GARCH methods are used and are compared with parametric GARCHs (Pure and ARMA-GARCH) in terms of their ability to forecast multi-periodically. These models are evaluated on four performance metrics: MSE, MAE, DS, and linear regression R squared. The real data in this study uses two Asian stock market composite indices of BSE SENSEX and NIKKEI225. This paper also examines the effects of outliers on modeling and forecasting volatility. Our experiment shows that both the RSVM and RRVM perform almost equally, but better than the GARCH type models in forecasting. The ARMA-GARCH model is superior to the pure GARCH and only the RRVM with RSVM hold the robustness properties in forecasting. 展开更多
关键词 RSVM RRVM ARMA-GARCH OUTLIERS volatility forecasting
下载PDF
Volatility forecasting in Chinese nonferrous metals futures market 被引量:1
2
作者 Xue-hong ZHU Hong-wei ZHANG Mei-rui ZHONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1206-1215,共10页
This paper seeks to model and forecast the Chinese nonferrous metals futures market volatility and allows new insights into the time-varying volatility of realized volatility and leverage effects using high-frequency ... This paper seeks to model and forecast the Chinese nonferrous metals futures market volatility and allows new insights into the time-varying volatility of realized volatility and leverage effects using high-frequency data.The LHAR-CJ model is extended and the empirical research on copper and aluminum futures in Shanghai Futures Exchange suggests the dynamic dependencies and time-varying volatility of realized volatility,which are captured by long memory HAR-GARCH model.Besides,the findings also show the significant weekly leverage effects in Chinese nonferrous metals futures market volatility.Finally,in-sample and out-of-sample forecasts are investigated,and the results show that the LHAR-CJ-G model,considering time-varyingvolatility of realized volatility and leverage effects,effectively improves the explanatory power as well as out-of sample predictive performance. 展开更多
关键词 volatility forecasting leverage effect time-varying volatility nonferrous metals futures high-frequency data
下载PDF
Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH‑MIDAS model 被引量:2
3
作者 Jian Liu Ziting Zhang +1 位作者 Lizhao Yan Fenghua Wen 《Financial Innovation》 2021年第1期1615-1633,共19页
This study investigates the impact of economic policy uncertainty(EPU)on the volatility of European Union(EU)carbon futures prices and whether it has predictive power for the volatility of carbon futures prices.The GA... This study investigates the impact of economic policy uncertainty(EPU)on the volatility of European Union(EU)carbon futures prices and whether it has predictive power for the volatility of carbon futures prices.The GARCH-MIDAS model is applied for evaluating the impact of different EPU indexes on the price volatility of European Union Allowance(EUA)futures.We then compare the predictive power for the volatility of the two GARCH-MIDAS models based on different EPU indexes and six GARCH-type models.Our empirical results show that the GARCH-MIDAS models,which exhibit superior out-of-sample predictive ability,outperform GARCH-type models.The results also indicate that EPU has noticeable effect on the volatility of EUA futures.Specifically,the forecast accuracy of the EU EPU index is significantly higher than that of the global EPU index.Robustness checks further confirm that the EPU index(especially the EPU index of the EU)has strong predictive power for EUA futures prices.Additionally,using the volatility forecasting methods that GARCH-MIDAS models combine with the EPU index,investors can construct their portfolios to realize economic returns. 展开更多
关键词 EUA Economic policy uncertainty GARCH-MIDAS volatility forecasting FUTURES
下载PDF
Comparative Study of Volatility Forecasting Models: The Case of Malaysia, Indonesia, Hong Kong and Japan Stock Markets 被引量:1
4
《Economics World》 2017年第4期299-310,共12页
This paper aims to investigate the effectiveness of four volatility forecasting models, i.e. Exponential Weighted Moving Average (EWMA), Autoregressive Integrated Moving Average (ARIMA) and Generalized Auto-Regres... This paper aims to investigate the effectiveness of four volatility forecasting models, i.e. Exponential Weighted Moving Average (EWMA), Autoregressive Integrated Moving Average (ARIMA) and Generalized Auto-Regressive Conditional Heteroscedastic (GARCH), in four stock markets Indonesia, Malaysia, Japan and Hong Kong. Using monthly closing stock index prices collected from 1 st January 1998 to 31 st December 2015 for the four selected countries, results obtained confirm that volatility in developed markets is not necessarily always lower than the volatility in emerging markets. Among all the three models, GARCH (1, l) model is found to be the best forecasting model for stock markets in Malaysia, Indonesia, and Japan, while EWMA model is found to be the best forecasting model for Hong Kong stock market. The outperformance of GARCH (1, 1) found supports again what is found in Minkah (2007). 展开更多
关键词 volatility forecasting models GARCH (1 1) EWMA ARIMA effectiveness emerging countries
下载PDF
Research on the Dynamic Volatility Relationship between Chinese and U.S. Stock Markets Based on the DCC-GARCH Model under the Background of the COVID-19 Pandemic
5
作者 Simin Wu Yan Liang Weixun Li 《Journal of Applied Mathematics and Physics》 2024年第9期3066-3080,共15页
This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t... This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education. 展开更多
关键词 DCC-GARCH Model Stock Market Linkage COVID-19 Market volatility forecasting Analysis
下载PDF
Volatility Forecasting and Volatility Risk Premium
6
作者 Jingfei Cheng 《Journal of Applied Mathematics and Physics》 2015年第1期98-102,共5页
Volatility is an important variable in the financial market. We propose a model-free implied volatility method to measure the volatility and test the volatility risk premium. The model-free implied volatility does not... Volatility is an important variable in the financial market. We propose a model-free implied volatility method to measure the volatility and test the volatility risk premium. The model-free implied volatility does not depend on the option pricing model, and extracts information from all the option contracts. We provide empirical evidence from the S & P 500 index option that model-free implied volatility is more accurate to forecast the future volatility and the volatility risk premium does not exist. 展开更多
关键词 MODEL-FREE Implied volatility volatility forecasting volatility RISK PREMIUM
下载PDF
Forecasting Realized Volatility Using Subsample Averaging
7
作者 Huiyu Huang Tae-Hwy Lee 《Open Journal of Statistics》 2013年第5期379-383,共5页
When the observed price process is the true underlying price process plus microstructure noise, it is known that realized volatility (RV) estimates will be overwhelmed by the noise when the sampling frequency approach... When the observed price process is the true underlying price process plus microstructure noise, it is known that realized volatility (RV) estimates will be overwhelmed by the noise when the sampling frequency approaches infinity. Therefore, it may be optimal to sample less frequently, and averaging the less frequently sampled subsamples can improve estimation for quadratic variation. In this paper, we extend this idea to forecasting daily realized volatility. While subsample averaging has been proposed and used in estimating RV, this paper is the first that uses subsample averaging for forecasting RV. The subsample averaging method we examine incorporates the high frequency data in different levels of systematic sampling. It first pools the high frequency data into several subsamples, then generates forecasts from each subsample, and then combines these forecasts. We find that in daily S&P 500 return realized volatility forecasts, subsample averaging generates better forecasts than those using only one subsample. 展开更多
关键词 Subsample AVERAGING forecast Combination HIGH-FREQUENCY Data Realized volatility ARFIMA MODEL HAR MODEL
下载PDF
Study of Volatility Stochastic Processes in the Context of Solvency Forecasting for Sri Lankan Life Insurers
8
作者 Ashika Mendis 《Open Journal of Statistics》 2021年第1期77-98,共22页
The main business of Life Insurers is Long Term contractual obligations with a typical lifetime of 20 - 40 years. Therefore, the Solvency metric is defined by the adequacy of capital to service the cash flow requireme... The main business of Life Insurers is Long Term contractual obligations with a typical lifetime of 20 - 40 years. Therefore, the Solvency metric is defined by the adequacy of capital to service the cash flow requirements arising from the said obligations. The main component inducing volatility in Capital is market sensitive Assets, such as Bonds and Equity. Bond and Equity prices in Sri Lanka are highly sensitive to macro-economic elements such as investor sentiment, political stability, policy environment, economic growth, fiscal stimulus, utility environment and in the case of Equity, societal sentiment on certain companies and industries. Therefore, if an entity is to accurately forecast the impact on solvency through asset valuation, the impact of macro-economic variables on asset pricing must be modelled mathematically. This paper explores mathematical, actuarial and statistical concepts such as Brownian motion, Markov Processes, Derivation and Integration as well as Probability theorems such as the Probability Density Function in determining the optimum mathematical model which depicts the accurate relationship between macro-economic variables and asset pricing. 展开更多
关键词 Risk Management Insurance Sector Sri Lanka Risk-Based Capital Brownian Motion Risk Charges Capital forecasting Stochastic Processes volatility Models
下载PDF
A Hybrid Particle Swarm Optimization to Forecast Implied Volatility Risk
9
作者 Kais Tissaoui Sahbi Boubaker +2 位作者 Waleed Saud Alghassab Taha Zaghdoudi Jamel Azibi 《Computers, Materials & Continua》 SCIE EI 2022年第11期4291-4309,共19页
The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a... The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a forecasting perspective.The complex characteristics of implied volatility risk index such as non-linearity structure,time-varying and nonstationarity motivate us to apply a nonlinear polynomial Hammerstein model with known structure and unknown parameters.We use the Hybrid Particle Swarm Optimization(HPSO)tool to identify the model parameters of nonlinear polynomial Hammerstein model.Findings indicate that,following a nonlinear polynomial behaviour cascaded to an autoregressive with exogenous input(ARX)behaviour,the fear index in US financial market is significantly affected by COVID-19-infected cases in the US,COVID-19-infected cases in the world and COVID-19-infected cases in China,respectively.Statistical performance indicators provided by the developed models show that COVID-19-infected cases in the US are particularly powerful in predicting the Cboe volatility index compared to COVID-19-infected cases in the world and China(MAPE(2.1013%);R2(91.78%)and RMSE(0.6363 percentage points)).The proposed approaches have also shown good convergence characteristics and accurate fits of the data. 展开更多
关键词 forecasting Cboe’s volatility index COVID-19 pandemic nonlinear polynomial hammerstein model hybrid particle swarm optimization
下载PDF
Relative Performance Evaluation of Competing Crude Oil Prices’ Volatility Forecasting Models: A Slacks-Based Super-Efficiency DEA Model
10
作者 Jamal Ouenniche Bing Xu Kaoru Tone 《American Journal of Operations Research》 2014年第4期235-245,共11页
With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the lit... With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the literature revealed that most studies tend to use several performance criteria to evaluate the performance of competing forecasting models;however, models are compared to each other using a single criterion at a time, which often leads to different rankings for different criteria—A situation where one cannot make an informed decision as to which model performs best when taking all criteria into account. In order to overcome this methodological problem, Xu and Ouenniche [1] proposed a multidimensional framework based on an input-oriented radial super-efficiency Data Envelopment Analysis (DEA) model to rank order competing forecasting models of crude oil prices’ volatility. However, their approach suffers from a number of issues. In this paper, we overcome such issues by proposing an alternative framework. 展开更多
关键词 forecasting CRUDE Oil Prices’ volatility Performance Evaluation Slacks-Based Measure (SBM) Data Envelopment Analysis (DEA) COMMODITY and Energy Markets
下载PDF
Quantitative method for evaluating detailed volatility of wind power at multiple temporal-spatial scales 被引量:6
11
作者 Yongqian Liu Han Wang +3 位作者 Shuang Han Jie Yan Li Li Zixin Chen 《Global Energy Interconnection》 2019年第4期318-327,共10页
With the increasing proportion of wind power integration, the volatility of wind power brings huge challenges to the safe and stable operation of the electric power system. At present, the indexes commonly used to eva... With the increasing proportion of wind power integration, the volatility of wind power brings huge challenges to the safe and stable operation of the electric power system. At present, the indexes commonly used to evaluate the volatility of wind power only consider its overall characteristics, such as the standard deviation of wind power, the average of power variables, etc., while ignoring the detailed volatility of wind power, that is, the features of the frequency distribution of power variables. However, how to accurately describe the detailed volatility of wind power is the key foundation to reduce its adverse influences. To address this, a quantitative method for evaluating the detailed volatility of wind power at multiple temporal-spatial scales is proposed. First, the volatility indexes which can evaluate the detailed fluctuation characteristics of wind power are presented, including the upper confidence limit, lower confidence limit and confidence interval of power variables under the certain confidence level. Then, the actual wind power data from a location in northern China is used to illustrate the application of the proposed indexes at multiple temporal(year–season–month–day) and spatial scales(wind turbine–wind turbines–wind farm–wind farms) using the calculation time windows of 10 min, 30 min, 1 h, and 4 h. Finally, the relationships between wind power forecasting accuracy and its corresponding detailed volatility are analyzed to further verify the effectiveness of the proposed indexes. The results show that the proposed volatility indexes can effectively characterize the detailed fluctuations of wind power at multiple temporal-spatial scales. It is anticipated that the results of this study will serve as an important reference for the reserve capacity planning and optimization dispatch in the electric power system which with a high proportion of renewable energy. 展开更多
关键词 Wind power Detailed volatility Frequency distribution MULTIPLE temporal-spatial scales TYPICAL DAYS forecasting accuracy
下载PDF
Extreme learning with chemical reaction optimization for stock volatility prediction 被引量:2
12
作者 Sarat Chandra Nayak Bijan Bihari Misra 《Financial Innovation》 2020年第1期290-312,共23页
Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selecti... Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting. 展开更多
关键词 Extreme learning machine Single layer feed-forward network Artificial chemical reaction optimization Stock volatility prediction Financial time series forecasting Artificial neural network Genetic algorithm Particle swarm optimization
下载PDF
To jump or not to jump:momentum of jumps in crude oil price volatility prediction
13
作者 Yaojie Zhang Yudong Wang +1 位作者 Feng Ma Yu Wei 《Financial Innovation》 2022年第1期1647-1677,共31页
A well-documented finding is that explicitly using jumps cannot efficiently enhance the predictability of crude oil price volatility.To address this issue,we find a phenomenon,“momentum of jumps”(MoJ),that the predi... A well-documented finding is that explicitly using jumps cannot efficiently enhance the predictability of crude oil price volatility.To address this issue,we find a phenomenon,“momentum of jumps”(MoJ),that the predictive ability of the jump component is persistent when forecasting the oil futures market volatility.Specifically,we propose a strategy that allows the predictive model to switch between a benchmark model without jumps and an alternative model with a jump component according to their recent past forecasting performance.The volatility data are based on the intraday prices of West Texas Intermediate.Our results indicate that this simple strategy significantly outperforms the individual models and a series of competing strategies such as forecast combinations and shrinkage methods.A mean–variance investor who targets a constant Sharpe ratio can realize the highest economic gains using the MoJ-based volatility forecasts.Our findings survive a wide variety of robustness tests,including different jump measures,alternative volatility measures,various financial markets,and extensive model specifications. 展开更多
关键词 Oil futures market volatility forecasting Momentum of jumps Model switching Portfolio exercise
下载PDF
Volatility Prediction via Hybrid LSTM Models with GARCH Type Parameters
14
作者 Mingyu Liu Jing Ye Lijie Yu 《Proceedings of Business and Economic Studies》 2022年第6期37-46,共10页
Since the establishment of financial models for risk prediction,the measurement of volatility at risky market has improved,and its significance has also grown.For high-frequency financial data,the degree of investment... Since the establishment of financial models for risk prediction,the measurement of volatility at risky market has improved,and its significance has also grown.For high-frequency financial data,the degree of investment risk,which has always been the focus of attention,is measured by the variance of residual sequence obtained following model regression.By integrating the long short-term memory(LSTM)model with multiple generalized autoregressive conditional heteroscedasticity(GARCH)models,a new hybrid LSTM model is used to predict stock price volatility.In this paper,three GARCH models are used,and the model that can best fit the data is determined. 展开更多
关键词 Time series Exchange rate forecast GARCH model Stock market volatility ERROR
下载PDF
Wind Speed Forecasting Based on ARMA-ARCH Model in Wind Farms 被引量:3
15
作者 He Yu Gao Shan Chen Hao 《Electricity》 2011年第3期30-34,共5页
Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series... Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value. 展开更多
关键词 short-term wind speed forecasting ARMA model ARCH effect volatility clustering
下载PDF
Selection of Heteroscedastic Models: A Time Series Forecasting Approach
16
作者 Imoh Udo Moffat Emmanuel Alphonsus Akpan 《Applied Mathematics》 2019年第5期333-348,共16页
To overcome the weaknesses of in-sample model selection, this study adopted out-of-sample model selection approach for selecting models with improved forecasting accuracies and performances. Daily closing share prices... To overcome the weaknesses of in-sample model selection, this study adopted out-of-sample model selection approach for selecting models with improved forecasting accuracies and performances. Daily closing share prices were obtained from Diamond Bank and Fidelity Bank as listed in the Nigerian Stock Exchange spanning from January 3, 2006 to December 30, 2016. Thus, a total of 2713 observations were explored and were divided into two portions. The first which ranged from January 3, 2006 to November 24, 2016, comprising 2690 observations, was used for model formulation. The second portion which ranged from November 25, 2016 to December 30, 2016, consisting of 23 observations, was used for out-of-sample forecasting performance evaluation. Combined linear (ARIMA) and Nonlinear (GARCH-type) models were applied on the returns series with respect to normal and student-t distributions. The findings revealed that ARIMA (2,1,1)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-norm models selected based on minimum predictive errors throughout-of-sample approach outperformed ARIMA (2,1,1)-GARCH (2,0)-std and ARIMA (1,1,0)-EGARCH (1,1)-std model chosen through in-sample approach. Therefore, it could be deduced that out-of-sample model selection approach was suitable for selecting models with improved forecasting accuracies and performances. 展开更多
关键词 ARIMA MODEL GARCH-Type MODEL HETEROSCEDASTICITY MODEL SELECTION Time Series forecasting volatility
下载PDF
实体企业脱实向虚与分析师盈余预测质量——雾里看花还是甄别有道?
17
作者 李庆德 魏卉 康燕芳 《审计与经济研究》 CSSCI 北大核心 2024年第5期57-68,共12页
当前,实体经济“脱实向虚”倾向较为明显,立足于监管部门日益重视分析师研报质量的现实背景,选取2007—2019年间我国非金融企业作为研究样本,探究实体企业脱实向虚是否以及如何影响分析师盈余预测质量。研究表明:实体企业脱实向虚显著... 当前,实体经济“脱实向虚”倾向较为明显,立足于监管部门日益重视分析师研报质量的现实背景,选取2007—2019年间我国非金融企业作为研究样本,探究实体企业脱实向虚是否以及如何影响分析师盈余预测质量。研究表明:实体企业脱实向虚显著降低了分析师盈余预测质量;机制检验发现,企业脱实向虚通过降低企业信息透明度进而降低了分析师盈余预测质量;进一步研究表明,良好的公司治理和高质量的外部独立审计能削弱企业脱实向虚对分析师盈余预测质量的负面影响,而机构投资者持股则会强化其负面效应。研究从资本市场信息中介视角丰富了企业脱实向虚的经济后果,对政府监管部门引导企业回归主业及提高资本市场的信息效率具有一定启示作用。 展开更多
关键词 企业脱实向虚 分析师盈余预测质量 盈余波动性 信息透明度 经济后果 公司治理
下载PDF
谁是驱动中国原油期货价格波动的关键信息? 被引量:2
18
作者 马嫣然 吴菲 +1 位作者 张大永 姬强 《管理科学学报》 CSSCI CSCD 北大核心 2024年第1期113-125,共13页
本文首次对影响中国原油期货价格波动的驱动因素进行了量化分析.运用广义动态因子模型,结合互联网数据,为中国原油期货价格构造了六类预测因子:供需预测因子、市场金融化预测因子、汇率市场信息预测因子、商品市场预测因子、全球宏观经... 本文首次对影响中国原油期货价格波动的驱动因素进行了量化分析.运用广义动态因子模型,结合互联网数据,为中国原油期货价格构造了六类预测因子:供需预测因子、市场金融化预测因子、汇率市场信息预测因子、商品市场预测因子、全球宏观经济预测因子以及事件预测因子.基于混频GARCH-MIDAS模型,本文发现上述六类因子能显著改善对原油价格波动的预测精度.同时,基于MCS检验结果,揭示出在不同时间尺度下,驱动中国原油价格波动的信息存在明显差异性,即在短期和中期预测中事件预测因子起主导作用,而供需因子则是在长期主导中国原油价格波动的关键因素.综上,本研究为国内原油市场参与者、政策制定者及市场监管者把握未来市场信息提供了分析工具和参考依据. 展开更多
关键词 中国原油期货 波动预测 预测因子 GARCH-MIDAS
下载PDF
美国不确定性冲击对全球股市波动的影响研究 被引量:2
19
作者 李政 李薇 《财经理论与实践》 CSSCI 北大核心 2024年第2期48-55,共8页
选取2000—2021年美国经济、金融、经济政策和地缘风险四类不确定性指数以及全球GDP排行前15国家股市收益率数据,基于多维不确定性冲击框架,运用单因子、双因子和多因子混频波动率GARCH-MIDAS模型,从样本内拟合与样本外预测两个方面实... 选取2000—2021年美国经济、金融、经济政策和地缘风险四类不确定性指数以及全球GDP排行前15国家股市收益率数据,基于多维不确定性冲击框架,运用单因子、双因子和多因子混频波动率GARCH-MIDAS模型,从样本内拟合与样本外预测两个方面实证考察美国不确定性冲击对全球主要国家股市波动的差异化影响。研究表明:美国经济不确定性和金融不确定性对多数国家股市长期波动均有正向推动作用,其中,美国金融不确定性的影响最为广泛;美国金融不确定性是影响中国股市长期波动的主要因素,且中美贸易摩擦主要通过美国金融不确定性传导;美国经济政策不确定性上升会增加俄罗斯和墨西哥股市长期波动,美国地缘风险对意大利股市长期波动存在显著正向影响。 展开更多
关键词 美国不确定性 股市波动 GARCH-MIDAS 样本外预测
下载PDF
A MULTISCALE MODELING APPROACH INCORPORATING ARIMA AND ANNS FOR FINANCIAL MARKET VOLATILITY FORECASTING 被引量:4
20
作者 XIAO Yi XIAO Jin +1 位作者 LIU John WANG Shouyang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期225-236,共12页
The financial market volatility forecasting is regarded as a challenging task because of irreg ularity, high fluctuation, and noise. In this study, a multiscale ensemble forecasting model is proposed. The original fin... The financial market volatility forecasting is regarded as a challenging task because of irreg ularity, high fluctuation, and noise. In this study, a multiscale ensemble forecasting model is proposed. The original financial series are decomposed firstly different scale components (i.e., approximation and details) using the maximum overlap discrete wavelet transform (MODWT). The approximation is pre- dicted by a hybrid forecasting model that combines autoregressive integrated moving average (ARIMA) with feedforward neural network (FNN). ARIMA model is used to generate a linear forecast, and then FNN is developed as a tool for nonlinear pattern recognition to correct the estimation error in ARIMA forecast. Moreover, details are predicted by Elman neural networks. Three weekly exchange rates data are collected to establish and validate the forecasting model. Empirical results demonstrate consistent better performance of the proposed approach. 展开更多
关键词 ARIMA model financial market volatility forecasting multiscale modeling approach neural network wavelet transform.
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部